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1 Introduction 

―Science is a method of investigating nature – a way of knowing about nature – that discovers reliable 

knowledge about it‖ [1]. This definition of science is the motivation behind this work where the author tries 

to apply the well known scientific method to define and further investigate the architectural style guiding the 

development of the Microsoft Dynamics AX product line. 

This introduction follows the deficiencies model proposed by Creswell [2] as a template for writing a solid 

introduction to a research study. Hence it begins by describing the research problem and continues by 

pointing to studies that have addressed this problem. It concludes by recognizing deficiencies in those studies, 

thus emphasizing the importance of this study by pointing out how it addresses these deficiencies. 

Taylor et al. [3] recognize ―refined experience‖ in form of design patterns [4], architectural styles and 

patterns [5] and domain-specific software architectures [6] as the major tool for a software architect in the 

design of a new software system. However, in order to be useful at all, such ―refined experience‖ must 

comprise reliable knowledge in form of a formal definition of the style, hypotheses about the elicited 

properties of the style and empirical evidence to support these hypotheses. 

In Literature, the notion of architectural styles was coined in building architectures already 25 B.C. in 

Vitruvius M. Pollio‘s famous treatise ―de Architectura‖ [7] before it was brought forward to the software 

engineering discipline by Dewayne Perry and Alexander Wolf in 1992 [8]. A first collection of architectural 

styles follows in Mary Shaw and David Garland famous paper on architectural styles and patterns [5]. 

Recently the concept was again refined in the two seminal works on software architecture by Bass et al. [9] 

and Taylor et al. [3]. Also the concept of software adaptability was inspired by the physical discipline [10] 

and was brought to the software engineering discipline by Taylor et al. [3]. Furthermore, Taylor et al. [3] in 

their work investigate the relationship of software architecture and adaptability and propose a set of styles 

promoting adaptability. 

However the approaches used to investigate architectural styles in the above studies lacks rigor and reliability. 

The styles are defined informally and its properties derived intuitively in the absence of any empirical 

evidence.  Furthermore none of the above works identifies an architectural style similar to the one presented 

later in this text. Hence, the following text begins with an extensive literature review on architectures, 

architectural styles and adaptability in section 3. Later the text presents the Architectural Style Analysis 

Method (ASAM) in section 4.1 derived by adapting the scientific method [1] to the definition and analysis of 

software architectural styles. ASAM is then adapted for the analysis of a new architectural style in sections 

4.2.2 by first presenting a tool to collect raw data about the style in action, then presenting metrics derived by 

applying the goal-question-metrics framework [11], and finally presenting another tool to obtain the measures 

of the metrics from the collected raw data. Furthermore, ASAM is applied to define and investigate a new 

architectural style defined as Partial Refinement architectural style: it begins by formally defining the style in 

section 5 using the ALFA [12] framework and investigating in detail the identified Selector connector as a 

crucial component of the style. In section 6 an empirical observation on 5 Microsoft Dynamics AX [13] 

implementations is presented and a statistical analysis of the data obtained follows in section 6.4. Finally the 

text inductively derives a set of 4 related hypotheses from the observation to depict some of the elicited 

properties of the style. 

Thus, the intent of this text is twofold: first the text aims to present ASAM, a reliable method which can be 

used to acquire reliable knowledge about an architectural style and hence significantly improve our 

knowledge about architectural styles and their elicited properties; second the text identifies the new Partial 

Refinement architectural style and applies ASAM to define it formally and reliably derive hypotheses on the 

elicited properties of the style. Therefore the text would be of interest above all for researchers searching for a 

reliable method to define and analyze new architectural styles, but likewise the text is also considered 

worthwhile for software architects which can use the ―refined experience‖ in form of the new architectural 

style in conjunction with the inductively derived hypothesis on elicited properties, for the design of new 

software systems.  
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1.1 Research Questions 

From the purpose statements in the above introduction, following research questions emerge: 

RQ1: How is it possible to acquire reliable knowledge about an architectural style in order to reliably predict 

its elicited properties? 

RQ2: How can the architectural style observed in Microsoft Dynamics AX systems be defined formally and 

what are the properties elicited by the style? 
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2 Definition of Terms 

Definition: A software systems architecture is the set of principal design decisions made about the system 

[3]. 

Definition: An architectural style is a named collection of architectural design decisions that (1) are 

applicable in a given development context, (2) constrain architectural design decisions that are specific to a 

particular system within that context, and (3) elicit beneficial qualities in each resulting system [3]. 

Definition: An architectural pattern is a named collection of architectural design decisions that are 

applicable to a recurring design problem, parameterized to account for different software development 

contexts in which that problem appears‖ [3]. 

Definition: A design pattern names, abstracts, and identifies the key aspects of a common design structure 

that make it useful for creating a reusable object-oriented design [4]. 

Definition: A domain-specific software architecture comprises: a) a reference architecture, which describes 

a general computational framework for a significant domain of applications, b) a component library, which 

contains reusable chunks of domain expertise, and c) an application configuration method for selecting and 

configuring components within the architecture to meet particular application requirements [6]. 

Definition: A non-functional requirement is a requirement that is not directly concerned with the specific 

functions delivered by the system, but may relate to emergent system properties [14]. 

Definition: Adaptability is a Software system‘s ability to satisfy new requirements and adjust to new 

operating conditions during its lifetime‖ [3]. 

Definition: A product line (engineering) comprises a set of products which are tied together by similarities in 

how they are designed or constructed [3]. 

Definition: The scientific method is a method of discovering reliable knowledge about nature based on 

empirical evidence (empiricism), practicing logical reasoning (rationalism), and possessing a skeptical 

attitude (skepticism) about presumed knowledge that leads to self-questioning, holding tentative conclusions, 

and being undogmatic (willingness to change one‘s beliefs) [1]. 

Definition: A scientific hypothesis is an informed, testable, and predictive solution to a scientific problem 

that explains a natural phenomenon, process, or event [1]. 

Definition: A corroborated hypothesis is one that has passed its tests, i.e., one whose predictions have been 

verified [1]. 

Definition: A scientific fact is a highly corroborated hypothesis that has been so repeatedly tested and for 

which so much reliable evidence exists, that it would be perverse or irrational to deny it [1]. 

Definition: A scientific theory is a unifying and self-consistent explanation of fundamental natural processes 

or phenomena that is totally constructed of corroborated hypotheses [1]. 
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3 Literature Review 

According to Yair and Timothy [15], an effective literature review is characterized by ―helping the researcher 

to understand the existing body of knowledge‖, thus ―providing a solid theoretical foundation for the 

proposed study‖ and ―substantiating the presence of the research problem‖. Further it should ―justifying the 

proposed study as one that contributes something new to the Body of Knowledge‖ and ―framing the valid 

research methodologies, approaches, goals, and research questions for the proposed study‖. In order to meet 

these goals, they proposes a framework based on a "systematic data processing approach comprised of three 

major stages: 1) inputs (literature gathering and screening), 2) processing (following Bloom‘s Taxonomy 

[16]), and 3) outputs (writing the literature review)." The following review was conducted using this 

framework and is motivated in fulfilling the ideas mentioned above. In doing so it follows the structure 

proposed in [2] where Creswell developed a model to structure a literature review based on five main 

components: 

 An introduction that tells the organization of the literature review section. 

 A topic to address the independent variable(s) proposed by the study. 
 A topic to address the dependent variable(s) proposed by the study. 

 A third topic to address studies on the relationship between the independent variable(s) and the 

dependent variable(s). 

 A summary that highlight the key research studies relevant to the proposed study, their general 

findings that relate to the proposed study, and support for the need of additional research on the 

proposed topic. 

3.1 Introduction 

In order to meet the above structure, the following sections first touch upon the independent variable of this 

study, the general topic of software architecture and architectural styles respectively. Thereby it starts in 

section 3.2 presenting the general foundations needed to understand the discipline, before it goes deeper into 

some of the fundamental concepts of architectural models, components, connectors and their configuration. It 

recognizes refined experience in form of architectural styles as a fundamental tool for software architects and 

hence proceeds with a short review of such styles in section 3.2.3. The review continues by addressing 

quality attributes as the dependent variable of this study in section 3.3, thereby focusing on software 

adaptability as the key property elicited by the investigated style. The review continues by investigating 

current literature for studies on the relationship between architectural styles and software adaptability in 

section 3.4. Finally the section closes with a brief summary of the major findings of the review in section 3.5. 

3.2 Software Architecture 

Many of the concepts that today build the foundation for the study of software architecture can be found 

already a quarter-century ago in the seminal works done by Edgar Dijkstra and David Parnas. Any literature 

review of software architecture would by no means be complete without reviewing also the works of these 

software engineering pioneers. 

Dijkstra‘s contribution to the scientific community by its seminal work on structured programming [17] [18] 

[19], and abstraction and refinement [18] [19] [20] directly influenced what today became software 

architecture. In his lifelong war against the unstructured organization of program code [17] and his 

promulgation towards a more structured organization [18] [19] of elements is what is core to software 

architecture today. Furthermore its advice to employ abstraction in designing Software [18] [20] and the 

concept of separation of concerns [21] is still one of the major tools for software architects in designing their 

systems. In the early 1970, Parnas deepen this observations with its seminal work on information hiding [22], 
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hierarchical structures [23], Program Families [24] [25], the relation between architecture and quality 

attributes such as reliability [24] and architecture as key concept in software adaptation [25]. Parnas dictum to 

―design for change‖ [25] is inherent in almost any successfully designed architecture today. In [22] Parnas 

recognizes the advantages of structuring a system in such a way to hide fragile design decision and therefore 

decouple the system in order to make it easier to maintain. In his work on Program Families [24] [25] Parnas 

recognizes the advantages inherent in viewing a system as a member of a family and designing it accordingly. 

Further Parnas recognizes the advantage of hierarchical structures and their ubiquity in Software [23]. Albeit 

some of the concepts mentioned above, today may seem trivial and inconspicous, they were key in laying the 

foundation in what today is called software architecture and it is important to note that we are ―standing on 

the shoulders of [this] giants‖ [26] in current work on software architecture. Thus, one will find references to 

these early concepts everywhere in the following text. 

However, the first works treating software architecture explicitly as a separate discipline and hence forming 

the foundation to this new field of study can be found in Perry and Wolf’s [8] seminal 1992 work on software 

architecture in general and Shaw and Garlan‘s [5] following work on architectural styles in 1996. In their 

seminal work Perry and Wolf try to develop an intuition about software architecture by looking at several 

architectural disciplines traditionally been considered sources of ideas for software architecture so far. They 

began discussing hardware and network architectures and further expanded their inquiry on building 

architecture as the "classical" architectural discipline. They conclude with the belief that "we find in building 

architecture some fundamental insights about software architecture: multiple views are needed to emphasize 

and to understand different aspects of the architecture; styles are a cogent and important form of codification 

that can be used both descriptively and prescriptively; and, engineering principles and material properties are 

of fundamental importance in the development and support of a particular architecture and architectural style". 

However, the analogy to building architectures must be taken with a pinch of salt and so Bass et al. [9]  

correctly argue that a building architect is faced with quality attributes considerable different than a software 

architect has and therefore they suggest to not take the analogies too far as they break down fairly quickly. 

This claim is also supported by Tailor et al. in [3] where the authors recognize several shortcomings of the 

analogy to building architectures and depict several of its limitations and problems. 

3.2.1 Definition 

Even though software architecture is recognized as a fundamental concept in the successful development of 

today‘s complex and critical software systems there is still no common understanding of the precise meaning 

of the term [27] and therefore this section walks through the huge universe of definitions and its implications 

for an architecture. 

Let the journey through this universe of definitions begin with a first stop at the prime fathers view of 

software architecture. Inspired by the art of building architecture, Perry and Wolf [8] propose a model of 

software architecture where elements capture the system's building blocks, their purpose and the services it 

provides: 

                                       

In this model, architecture comprises three types of building blocks: Processing elements performing 

calculations and acting upon Data elements which contain the information used and transformed. Further they 

identify Connecting elements as a key concept in their model, acting as the glue that holds all the elements 

together. They play a fundamental rule in distinguishing between different architectures and affect the 

characteristics of a particular architecture or architectural style. The form constraints the choice of 

architectural elements by capturing minimum desired constraints on the properties for those elements. 

Furthermore the form constrains the relationships between those elements, how they interact and how they 

are organized. The form also captures the importance of such a property or relationship to enable distinction 

from aesthetics and engineering and allows further the selection among alternative properties or relationships. 

Furthermore, the third dimension of their definition captures the system designers rational for specific choices, 
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hidden information in the original architect‘s minds. This component allows one to answer the why question 

about an architecture. Why this architectural style was chosen? Why this elements and this form was chosen? 

The rational explicates the satisfaction of the system constraints determined by its non-functional aspects. 

Let us consider now Bass et al. [9] definition of the term software architecture. They define software 

architecture as follows: ―The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally visible properties of those 

elements, and the relationships among them‖. To understand better this definition it‘s inevitable to look 

further into the implications inherent with this definition: First of all "architecture defines software elements" 

by focusing on the relationship between them and suppressing details that do not affect how they use, are 

used by, relate to or interact with other elements. Therefore architecture abstracts from internal 

implementation details which are not architectural. This is exactly what can also be found in Parnas [22] early 

work on hiding design decisions which are likely to change. Furthermore the definition sheds light upon the 

fact that "systems can and do comprise more than one structure" which implies that there is no single 

structure for a system, but rather there are different structures for a system that all convey different 

architectural information for the same architecture. This implication is indeed coherent with Perry and Wolf‘s 

[8] early perception to use multiple views to describe an architecture. Third the definition makes clear that 

explicitly or implicit "every computing system with software has a software architecture". This by no means 

presumes that every system was developed with a specific architecture in mind or even that anyone knows the 

systems architecture. Rather each system can be shown to comprise elements and the relationship among 

them. This totally agrees with Parnas [23] early insight that every system has a [hierarchical] structure and 

that in order for this statement to carry any information at all it is important to specify the way the system is 

divided into parts and the relationship between these parts. Another important insight from the above 

definition is that "the behavior of each element is part of the architecture" insofar as that behavior bear on 

externally visible properties and hence influences other architectural elements and guides the interaction and 

contributes to the overall system acceptability. The definition further does not care of whether "the 

architecture for a system is a good one or a bad one", allowing architectures to meet or not meet its functional 

or non-functional requirements. 

Another fundamental definition of software architecture comes from Taylor et al. [3]: "A software systems 

architecture is the set of principal design decisions made about the system". Let us now take a closer look on 

this statement and consider the implications of this definition of software architecture. Note the central role of 

the notion of design decision in this definition of software architecture. The authors define design decisions 

as decisions „encompass[ing] every aspect of the system under development" and relate them to system 

structure, functional behavior, interaction, non-functional properties and implementation issues. Furthermore 

one may recognize the adjective principal in the definition. This is another central term in the definition. It 

implies that there are some design decisions which are not considered architectural. It distinguishes 

architectural vs. non architectural design decisions. The definition of principal and therefore the consideration 

of a design decision as architectural or not however are largely subjective and depend on the context in which 

the system is developed. This differentiation of architectural and non architectural decisions is implicit also in 

the definition provided by Bass et al. [9]. Another implication from the above definition is the existence of a 

set of such principal design decisions at any time during the development and the evolution of the 

architecture. But this is a rather dynamic process and this means that architecture must have a temporal 

component. This is an addition to Perry and Wolf‘s [8] definition which does not explicitly capture evolution 

in their definition. Furthermore the authors distinguish between a prescriptive and a descriptive architecture, 

which implies that the architecture consists also of the rational, which is perfectly consistent with the 

definition given by Perry and Wolf [8]. 

Another useful definition of system architecture is the one tightened in the ANSI/IEEE Standard 1471-2000: 

―Architecture is the fundamental organization of a system, embodied in its components, their relationships to 

each other and the environment, and principles governing its design and evolution‖ [28]. However this 

definition does not explicitly refer to software architecture and rather depicts its similarity to other kinds of 

architectures. 
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3.2.2 Architectural Models 

Although each architecture is different, Taylor et al. [3] elaborate on Perry and Wolf‘s [8] work and identify 

some basic concepts that are common to almost all architectural descriptions: components as the 

―architectural building blocks that encapsulate a subset of the system‘s functionality and/or data‖, connectors 

as another first class ―architectural building blocks that effect and regulate interactions among components‖, 

interfaces as ―the points at which components and connectors interact with the outside world‖, configurations 

comprising ―a set of specific associations between the components and connectors of a software systems 

architecture‖ and rationale, containing ―the information that explains why particular architectural decisions 

were made, and what purpose various elements serve‖. In the following section we will take a closer look on 

these principal elements of architecture. 

3.2.2.1 Components 

The notion of a modular element to encapsulate certain design decisions and hide them behind well defined 

public interfaces goes back to Parnas in 1972 [22]. He recognizes the benefits yielded if ―every module [in a 

system] is characterized by its knowledge of a design decision which it hides from all others‖ and ―[choose] 

its interface or definition […] to reveal as little as possible about its inner workings‖. 

Another important insight on components is provided by Shaw et al. [29], where the authors define a 

component as a locus of computation and state in a system. In this definition one can recognize that while the 

first two kinds of elements identified by Perry and Wolf [8] became what nowadays would be called a 

software component, the last one flow into the different concept of software connector threaten explicitly in 

the next section. 

Another widely cited definition on software components can be found in Szyperski‘s [30] seminal work on 

components where he defines them as a unit of composition with contractually specified interfaces and 

explicitly context dependencies only. According to the author, a software component can be deployed 

independently and is subject to composition by third parties. 

On top of the above definitions, Taylor et al. [3] provide the following definition of a software component: A 

software component is an architectural entity that (1) encapsulates a subset of the system's functionality 

and/or data, (2) restricts access to that subset via an explicitly defined interface, and (3) has explicitly defined 

dependencies on its required execution context. The key implication of the above definition is the observation 

that a component appears as a black box which is accessible from the outside only, and only via its public 

interface. Therefore it substantiates the fundamental software engineering principles of encapsulation, 

abstraction and modularity [22]. Another observation is the explicit treatment of the components execution 

context in form of the components required interface. This context is assumed to be provided by other 

components and comprises the availability of specific resources, such as data files or directories, required 

system software like operating systems, middleware and runtime environments, and finally the hardware 

configurations needed to execute the component. A last but crucial observation stated by Taylor et al. is the 

relationship of a component to a specific application or problem domain to which it belongs. This domain 

dependence is one of the major aspects a component differs from the below described connectors which are 

primarily domain independent. However, Taylor et al. identify also so called utility components which are 

mostly application and also domain independent and usually provide a large superset of any system‘s 

particular needs. 

3.2.2.2 Connectors 

The notion of a software connector as a first class architectural element stem from Perry and Wolf‘s [8] 

seminal work. According to the authors these connecting elements are ―the glue that holds the different pieces 

of the architecture together‖. Furthermore they recognize that ―these connecting elements play a fundamental 

part in distinguishing one architecture from another and may have an important effect on the characteristics 

of a particular architecture or architectural style‖. Despite the early advice of Perry and Wolf on the key role 

connectors plays in the discipline of software architectures, they were considered for long time as less 
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important than processing or data elements. While research focused mainly on component structure, 

interfaces and functionality, connecting elements only played a secondary role [30]. 

This Problem however was finally uncovered by Mehta et al. [31] who provides an extensive treatment of the 

concept ending up with a complete taxonomy of software connectors. According to the authors every 

connector is build around two elementary principles, those for managing the flow of control and those for 

managing the flow of data. Furthermore each connector follows the necessary condition to maintain one or 

more channels or ducts used to link different components to implement former elementary principles. 

Consider Figure 1 for a graphical representation of their connector classification framework. 

 

Figure 1: Structure of the connector classification framework [31]. 

In this framework they recognize four core types or roles of interaction services a connector can provide: 

 Communication as the reification of the flow of data principle supporting the transfer of data between 

components. 

 Coordination as the conception of the second elementary principle of flow of control. 

 Conversion which enables adaptation of two normally different components to allow heterogeneous 

components to interact. 

 Facilitation services which are used to mediate and streamline component interaction. 
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In order to realize their services, connectors may belong to one or more connector types with each type 

having some defined points of variation, so called dimensions and values to choose from in filling this 

dimensions. In choosing values for each dimension one can create a connector species which can either be 

considered as simple or composite (higher-order) species, depending on whether they use dimensions of one 

or multiple connector types. The authors also identify several types a connector can belong to with the 

different dimensions enabling the variability for a connector and possible values to instantiate a specific 

species: 

 Procedure call connectors provide communication and coordination services varying in dimensions 

like parameters, entry point, invocation, synchronicity, cardinality and accessibility. A specific 

procedure call connector will now be created by choosing among several values to fill these 

dimensions. An example of a simple species of this connector type might be the typical programming 

level procedure call, while a higher order species would emerge by applying some facilitating 

services to create a RPC connector. 

 Event connectors are similar to procedure call connector in that they provide communication and 

coordination services in a different way. Connectors of this type can vary in dimensions such as 

cardinality, delivery, priority synchronicity, notification causality and mode. Examples of such type 

of connectors are found in windowing systems or distributed applications that require asynchronous 

communication. 

 Another identified type is the data access connector type which provides communication and 

conversion services. Variation is implemented in dimensions like locality, access, availability, 

accessibility, life cycle and cardinality. Such a connector would allow to access data from a data store 

component and translate the data in type of differences in the required and provided data format. An 

example of such a connector type would be a DBMS. 

 A linkage connector type is the simplest among all the types but simultaneous it is the most important 

one enabling the establishment of ducts to form the foundation upon which other connectors can 

perform their actions. They offer facilitation services and vary in types of reference, granularity, 

cardinality and binding. 

 Stream connector types are mere communication based and vary in delivery bounds, buffering, 

throughput, state, identity, locality, synchronicity, format and cardinality. They allow for transferring 

a large amount of data between components and may be combined with other connectors such as the 

data access connector to perform database and file storage access. Examples of species from such a 

type would be the UNIX pipes or the TCP/UDP communication sockets. 

 Arbitrator connectors play a key role in managing different components which are not "intelligent" 

enough to coordinate their activities by themselves. Arbitrators therefore provide coordination and 

facilitation services and varies in dimensions such as fault handling, concurrency, transactions, 

security and scheduling. 

 Adaptor connectors are used to connect components in heterogeneous environments where 

components have not been designed to interoperate. Therefore providing conversion services and 

varying in dimensions like Invocation conversion, packaging conversion, protocol conversion, and 

presentation conversion. 

 Finally distributor connector types are used in distributed systems to identify and route interaction 

among distributed components. They never exist by themselves, but serve other types such as streams 

or procedure calls hence providing facilitation services. Such types vary in dimensions such as 

naming, delivery and routing. Famous examples of such connector types are several network services 

such as naming, routing, and switching services. 

In their seminal work, Taylor et al. [3] pick up the above ideas and elaborate them further. They define a 

software connector as an architectural element tasked with effecting and regulating interactions among 

components. Furthermore they come up with a process of selecting an appropriate connector for a given 

system and provide a connector compatibility matrix to support conception of composite connector species. 
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3.2.2.3 Configuration 

Another important concept in every architectural description is how specific components and connectors are 

composed to meet the systems objectives. Such a composition is also called a configuration and defined by 

Taylor et al. [3] as ―a set of specific associations between the components and connectors of a software 

systems architecture‖. However the authors note that establishing an interaction path between two 

components is a necessary, but by no means a sufficient condition for communication. So called architectural 

mismatches may occur for example due to incompatible interfaces. 

3.2.2.4 Modeling Techniques 

In Taylor et al. [3] one can find a summary of a panoply of modeling techniques useful for the development 

of an architectural model, ranging from natural language and informal power-point modeling over more 

sophisticated languages like UML [32] or so called architecture description languages like Darwin [33] or 

Rapide [34]. Furthermore the Authors note some domain- and style specific ADL‘s like Koala [35], Weaves 

[36] and the architecture analysis and design language [37], Acme [38], The architecture description markup 

language [39] and xADL [40]. Finally Kruchten [41] suggests 5 different views for an architectural model to 

communicate it in a sufficient manner. 

Metha and Medvidovic [12] however recognize some deficiencies in the traditional way of characterizing 

architectural styles in terms of constrains on processing and data components, connectors, and their 

configurations. Hence, they suggest a five-way characterization of styles using structure, interaction, behavior, 

topology and data. On top of this characterization they developed ALFA, the assembly language for 

architectures, as a framework ―for understanding, and as a result composing‖ architectural styles from so 

called architectural primitives. These primitives are fine-grained, low-level abstractions, each of which 

focuses on a single aspect of an architectural style. Furthermore, the authors identify a set of such primitives 

consisting of eight nouns, capturing the form of architectural style elements, and nine verbs capturing the 

element‘s function: 

 Data: Datum 

 Structure: Particle, Output, Input, Twoway 

 Interaction: Duct, Relay, Birelay, holds, loses 

 Behaviour: create, send, receive, handle, reply 

 Topology: connect, disconnect 

3.2.3 Architectural Styles 

Before going deeper into the concept of architectural styles, let‘s first take a look on the physical discipline to 

develop an intuition on how creating a good architecture. A fundamental insight to the design process as a 

whole can be found in Jones [42] work about industrial design. He suggests starting the process with the 

gathering of information before a set of alternative arrangements for the design as a whole can be derived on 

top of that information. After then one of these alternatives is selected for further elaboration to a point where 

the work can be split up for detailed design by many people working in parallel. This approach to design 

nowadays pervades the software engineering world and is to be found in many traditional software 

development processes like the waterfall or spiral model. However, a crucial step in this process is thy way 

such a set of alternative arrangements is derived. Taylor et al. [3] propose several strategies to address the 

problem of identifying this starting point and detect refined experience in form of architectural styles and 

patterns as the Grand tool to manage this problem. They further propose to ―use the fundamental design tools 

of software engineering‖: abstraction [18] [19] [20] and modularity in form of simple machines and 

separation of concerns [21] [22] to ―carve with those knives‖ to that design. Furthermore the authors advice 

to isolate creative inspiration to those parts where it is really needed. 

The importance of style in architecture to constrain an architecture to yield specific properties out of the 

architecture was documented in physical discipline already in 25 BC, in Vitruvius [7] famous treatise on 



 

13 

 

architectures. Later on, Perry and Wolf [8] again bring the concept from the physical discipline to the 

software engineering world. They recognize that we have not yet arrived at the stage where we have a set of 

architectural styles with their accompanying standard design elements which can be used by the architect so 

that he can focus on those elements where customization is crucial. They define architectural style as follows: 

―If architecture is a formal arrangement of architectural elements, then architectural style is that which 

abstracts elements and formal aspects from various specific architectures‖. Thereby they spot that ―an 

architectural style is less constrained and less complete than a specific architecture.‖ They note that the 

boundaries between a style and a specific architecture are porous and ―an architectural style [..] encapsulates 

important decisions about the architectural elements and emphasizes important constraints on the elements 

and their relationships‖ thereby focusing on those decisions suffering erosion and drift. 

On top of the definition of Perry and Wolf, Taylor et al. [3] defines an architectural style as a named 

collection of architectural design decisions that (1) are applicable in a given development context, (2) 

constrain architectural design decisions that are specific to a particular system within that context, and (3) 

elicit beneficial qualities in each resulting system‖. Furthermore the authors came up with a fundamental 

statement on the relationship between design patterns, architectural styles, architectural patterns and domain-

specific architectures. Thereby they classify them according to domain knowledge and scope with porous 
boundaries between the concepts. 

 

Figure 2: Domain knowledge versus scope in showing the relationship between 

styles and patterns [3]. 

In Figure 2 the horizontal axis represents the application scope of the lessons of experience where the vertical 

line represents the domain knowledge clutched within the experience. According to the diagram it appears 

that design patterns such as that in [4] are very specific applicable for a given programming language while 

they are applicable within a broad domain context. Further, the authors note, that architectural patterns are a 

named collection of architectural design decisions that are applicable to a recurring design problem, 

parameterized to account for different software development contexts in which that problem appears, such as 

the one in [43]. Domain specific architectures on the other hand are very high level in the sense of system 
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structure but very specific in the domain knowledge. The authors suggest to compose a DSSA of a reference 

architecture, a corresponding library of software components for that architecture and a method for choosing 

and configuring them. 

On the other hand, Bass et al. [9] do not consider this explicit distinction from style to pattern and define 

them as a description of element and relation types together with a set of constraints on how they may be 

used. According to the authors an architectural pattern and an architectural style describe the same concept. A 

set of constraints on element types and their patterns of interaction. However, the authors agree in the 

assumption, that patterns exhibit known quality attributes. 

Some of the first documented styles can be found in the work of Shaw and Garlan [5] in their 1996 book 

where they identify a asset of well known styles observed in industry: the pipes and filter style, data 

abstraction and object oriented organization, event based, implicit invocation, layered systems repositories, 

table driven interpreters, distributed processes, main program and subroutine, domain specific software 

architectures, state transition systems, process control systems. The authors further advice on how to combine 

several pure styles to gain a so called heterogeneous architecture. 

Taylor et al. [3] elaborate on this work and first distinguish between simple and more complex styles. 

Furthermore they propose an outline to classify and organize simple styles and provide seven classes of such 

styles: 

 The traditional language-influenced styles reflect simple low-level styles that naturally following 

from using some of the imperative languages. These kinds of styles would be positioned at the 

outermost position, with respect to the scope dimension, in the above style-cloud. Of course styles in 

this category can be combined with other, more general styles to obtain some intended quality 

properties. The authors mention further two examples for these style categories: main program and 

subroutines and object-oriented style. 

 The layered styles on the other hand encompass all styles following the well known layer principle, 

wherein the architecture is separated into ordered layers and programs within one layer may obtain 

services from a layer below it. The authors mention two important styles belonging to this class: the 

virtual machine style and the client-server style. 

 The dataflow styles category comprises all such styles where data movement between independent 

processing elements is crucial. Such styles may be batch-sequential and pipe-and-filter. 

 Shared State styles are those styles where the single components communicate through a global 

repository. The design attention within these styles is explicitly on these structured, shared 

repositories. One common example for this category would be the blackboard style or the rule-

based/expert system with a knowledge base as the shared memory. 

 In the interpreter styles category, architectures following these styles work on a current execution 

state and enable the dynamic, on-the-fly interpretation of commands to modifying such state. The 

identification of the next command may be affected by the result of executing the previous command. 

Members of this class would be the basic interpreter style used in Microsoft Excel to evaluate 

Excel's formulas; or the mobile code style, in which the place to execute the commands may vary 

over time. 

 The implicit invocation style groups styles with loosely coupled elements due to calls which are 

invoked indirectly and implicitly as a response to a notification or an event. Two familiar styles in 

this class are the publish-subscribe style and the event based style. 

 Finally there is another important style which is grouped in the equally named class, the peer-to-peer 

style, well known for its decentralized state and logic. 

The authors further identified more complex styles, derived by leveraging a combination of some of the 

simple styles to yield powerful design tools capable of handling challenging design problems. They 

mention the C2 (component and connector) style as a combination of concepts from the layered and 

event-based architectures and the distributed object style as the result of a desire to extend the benefits of 

a core style to a distributed, heterogeneous world. 
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3.3 Software Quality Attributes 

Software quality attributes are specified in form of so called non-functional software requirements which, 

according to Sommerville [14], are not directly concerned with the specific functions delivered by the system 

but may relate to emergent system properties such as reliability, response time, performance, and others. 

Furthermore Sommerville notes that they are often more critical than individual functional requirements and 

failing to meet such a non-functional requirement can mean that the whole system is unusable. Therefore he 

proposes to state them quantitatively, so that they can be objectively tested. An interesting approach to 

characterizing such quality requirements can be found in Bass et al. [9] where the authors identify several 

shortcomings with current taxonomies and definitions and propose so called quality attribute scenarios to 

characterize and define quality attributes in a meaningful way. 

In current literature however, a lot of such quality attributes can be found and many of them have their own 

research and practitioner communities. A detailed treatment of all this attributes is outside the scope of this 

text. Hence the following sections concentrates on adaptability as a key property elicited by the style 

investigated in this study. 

3.3.1 Software Adaptability 

Again it is important to note that in the recent work on software architecture and adaptation we are plowing 

old ground. In his early work, David Parnas [24] recognizes pragmatically that ―a set of Programs […] 

constitute a family whenever it is worthwhile to study programs from the set by first studying the common 

properties of the set and then determining the special properties of the individual family members‖. Parnas 

[25] further recognizes four ―obstacles commonly encountered in trying to extend or shrink systems‖: 

 Excessive information distribution due to the lack of information hiding, where ―too many programs 

were written assuming that a given feature is present or not‖. 

 A chain of data transforming components, where the data format between different components 

change and makes it ―hard to remove because the output of its predecessor is not compatible with the 

input requirements of its successor‖ 

 Components that perform more than one function ―because the functions seem too simple to separate‖ 

thereby manifesting itself in too large components comprising too much functionality. 

 Loops in the uses relation as a side effect of excessive and unrestricted reuse through components 

leading to a system where ―nothing works until everything works‖. 

Parnas addresses these pitfalls in [23] [25] with the advice to anticipate change and identify variability points 

already in requirements elicitation, employ information hiding by isolating changeable parts behind fixed 

interfaces, apply the virtual machine concept which teaches us to ―stop thinking of systems in terms of 

components that correspond to steps in processing‖ and instead employ abstraction at the level of operators 

and operand types and designing the uses structure by constraining the use of the uses relation for example in 

a hierarchical way. Parnas [25] also lays the foundation to what today became product line engineering with 

the groundbreaking assumption that development and maintenance costs will be significantly reduced if 

design for a system proceeds with the whole family in mind rather than just a sequence of individual systems 

[24], thus exploiting commonalities across systems. 
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Figure 3: Representation of development by sequential completion and using 

“abstract decisions” [24]. 

In Figure 3 Parnas depicts the traditional development as sequential completion in contrast to the program 

family approach or ―abstract decisions‖. In the above Figure, an X represents a working system, an O stands 

for an intermediate representation but not a working program, and an arc represents a design decision. 

Furthermore Parnas recognizes two development paradigms suitable for the design of program families, 

differing in the method in which they represent the partial designs: stepwise refinement [18], promulgating 

the use of abstract operators and operand types refined in subsequent steps; and module specification [22], 

leveraging interface specification to hide varying design decisions in different subfamilies. 

Taylor et al [3] recently elaborated on the concept of software adaptation and defines software adaptability as 

―a software system‘s ability to satisfy new requirements and adjust to new operating conditions during its 

lifetime‖. Furthermore the authors draw from the physical building discipline in its effort to study this 

property. They recognize an interesting inside by considering change in building architectures. In his 

insightful work Steward Brand [10] describes how and why buildings change over time and categorizes the 

types of change that can be made to a building architecture in six so called shearing layers. Site represents the 

geographical settings providing the base for generations of ephemeral buildings. Structure, as the incarnation 

of the buildings, consists of the foundation and the load bearing elements. Skin, as the malleable surface of 

the building, regularly suffers from changes. Services as pervading net of wires and plumbing, space plane as 

the internal layout of the building in terms of walls, doors and floors and last but not least the transient order 

of stuff like pictures, phones or desks. 

Although software in its very nature consists of far more malleable elements it can be equally categorized 

into different layers: the architecture as the software systems structure, or the user interface as its skin. 

However this classification will not become obvious by simply looking at a systems source code, but requires 

a deeper analysis. However if we could make a similar, explicit categorization of a software system according 

to the nature and cost of making a change within those dimensions, this would help us to understand the 

necessary techniques to effect a given change and allow us to dependably estimate the time and cost to 

perform changes. 

Another lesson from Brands observations that layers change at different rates is the advice to limit coupling 

between elements belonging to different shearing layers. This lesson is extending Parnas early advice to 

design for change [25] with the admonition to constrain connections between elements according to the type 

of layer they belong to. 

A last insight from the building discipline comes from the fact that ―because of the different rates of change 

of its components, a building is always tearing itself apart‖. This is similar in software engineering, thus, one 

should avoid making changes to software systems cutting across layer boundaries. This problem results 

naturally if changes are based only upon local knowledge of source code without considering software 

systems architecture. 
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3.4 Architectural Styles promoting Adaptability 

In recent works on software architectures, a software systems architecture is determined as the key factor in 

achieving quality attributes for the system [9] [3]. Hence the following chapter presents different architectural 

styles, identified by Taylor et al. [3] as appropriate for supporting adaptation. The authors therefore classify 

them into two categories: Interface-focused architectural solutions, which reflect David Parnas dictum to 

―design for change‖ [25], and (strong) architecture based approaches. According to the authors, the primary 

focus of former technique is only in adding functionality in the form of a new module and does not purport to 

support all types of change. 

3.4.1 Application Programming Interfaces (APIs) 

In this style, the core application exposes an interface in form of a set of functions, types, and variables. 

Developers may then add new modules which can use these interfaces to modify the existing application. The 

interrelationship of the new modules itself is thereby unconstrained by the API and the original application 

cannot make calls to the new modules. 

 

Figure 4: Using an API to extend an application with a new 

module [3]. 

Figure 4 depicts this situation graphically, where a new component has been added and can access the 

features of the original application only by those interface exposed by the API. 

3.4.2 Plug-Ins 

In this style, instead of the added components calling the original application, the application calls out to the 

added component through a predefined interface. In order for the original application to be aware of the 

existence of the plug-in, this must become registered with the application. 

 

Figure 5: Using a plug-in interface to extend an application [3]. 
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Figure 5 demonstrates the style in action, where the core application calls out to an added component and 

thereby adapting its behavior. 

3.4.3 Component/Object Architectures 

In this style, the original application is no longer viewed as a monolithic entity, but its internal structure is 

exposed, and hence amenable for change. New components can interact directly with any internal component 

and also replace it by exposing a compatible interface. 

 

Figure 6: Application modification via the component/object 

architecture approach [3]. 

Figure 6 shows this situation where the added component directly calls on the interface exposed by an 

internal component. 

3.4.4 Scripting Languages 

This style in essence is a use of the interpreter style described earlier. The core application provides its own 

programming languages through which the applications behavior can be modified. 

 

Figure 7: Application adaptation by means of a scripting 

language [3]. 

Figure 7 depicts the situation in which the commands of a component, implemented using the applications 

own programming language, will be interpreted by the core applications interpreter; thus, changing the 

applications behavior. 
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3.4.5 Event Interfaces 

This technique is an application of the event-based style presented earlier. The core application provides two 

types of interfaces through which its behavior can be modified: Incoming event interface, where the new 

components can act on messages received; and outgoing event interface, where the new components can 

generate new messages. 

 

 

Figure 8: An event architecture used to support extension [3]. 

Figure 8 shows this situation graphically where a new component will be added to communicate with the 

application through an event mechanism connector. 

3.4.6 (Strong) Architecture Based Approaches 

For more complex kinds of adaptations than just adding new components, the authors suggest to use explicit 

architectural models, faithful to the implementation, and applying consistent use of architectural styles 

described earlier. They consider the connector as a crucial element in highly adaptive systems. They claim 

that to the extent that an architectural style enables easy attachment and detachment of components from one 

another, that style facilitates adaptation. Hence they point to the implicit invocation architectural style 

mentioned earlier using the event based connector as an example of an architectural style implementing 

adaptation through its connector. 

3.5 Summary 

The above literature review began by a general treatment of software architecture, investigating several 

definitions and their implications presented in current literature. Further the notions of component, connector 

and configuration were presented as key concepts in any architecture and a detailed review of them followed. 

A connector classification framework was presented to investigate software connectors and classify them 

according to their properties. Refined experience in form of architectural styles and patterns was found to be 

a key tool for software architects in the design of new software systems. Furthermore some architecture 

description languages were mentioned to define an architecture and the ALFA framework was found to be a 

useful tool for the formal definition of architectural styles by composing them from so called architectural 

primitives. The notion of quality attributes was presented and the attribute of adaptability was threatened in 

more detail. It was found that software architecture plays a key role in elicited properties of a software system; 

adaptability hence depends above all on a software systems architecture and especially on the connectors 

used in it. Thus, a review on architectural styles promoting adaptability finally concludes the literature review.  
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4 Research Approach 

The following section describes the approach taken in the definition and analysis of the observed style. For 

this purpose the section begins first by presenting an appropriate method to acquire reliable knowledge about 

an architectural style. In section 4.1, the architectural style analysis method (ASAM) is derived by adopting 

the scientific method for architectural style purposes. Subsequently the application of the method in the 

definition and analysis of the new architectural style is explained in section 4.2. 

4.1 ASAM: The Architectural Style Analysis Method 

According to Schafersman [1], science is the only method that results in the acquisition of reliable knowledge, 

that is knowledge that has a high probability of being true because its veracity has been justified by a reliable 

method. Therefore ASAM is derived from the scientific method by applying former to the definition and 

analysis of software architectural styles, in order to acquire reliable knowledge about them. Schafersman 

places the scientific method within a context of scientific thinking, which in turn is based on three central 

components: empirical evidence (empiricism), logical reasoning (rationalism) and possession of a skeptical 

attitude (skepticism). Roughly speaking Schafersman describes the scientific method in form of a process 

consisting of following activities: 

1. Identification of a problem or phenomena: A problem or phenomena identified in nature is defined 

formally to enable further investigation. Any attempt to gain knowledge must start here. 

2. Observation of the problem or phenomena: The problem or phenomena under investigation will be 

observed in order to acquire relevant information about it. These observations, and all that follow, 

must be empirical in nature; they must be sensible, measurable, and repeatable, so that others can 

make the same observations. 

3. Proposing a solution to the problem or an explanation of the phenomena: On top of the empirical 

observation a set of suggested solutions or explanations can be derived by inductive reasoning. In 

science these claims are called scientific hypotheses and must be predictive and testable. A definition 

of hypotheses can be found in section 2. 

4. Testing the hypothesis: In this step, one has to deduce predictions from the hypotheses and test them. 

The hypotheses and its predictions must be tested either by performing experiments or by making 

further observations. 

5. Accept or reject the hypothesis: If the hypotheses fail the tests they have to be abandoned or modified 

and tested again. If they pass the tests it becomes a corroborated hypothesis and can now be tested by 

other scientists. If it passes further testing, it becomes highly corroborated and finally a scientific fact. 

For definition of latter one can again consider section 2.  

6. Construct, support, or cast doubt on a scientific theory: Such a theory explains nature by unifying 

many, once unrelated facts or corroborated hypotheses; they are the strongest and most truthful 

explanations of how the universe, nature, and life came to be, how they work, what they are made of, 

and what will become of them. 

One can now apply this process for the definition and analysis of software architectural styles by adapting 

each single activity: The problem or phenomena under investigation would be a new architectural style 

observed in industry. The style must then be defined formally using a formal architecture description 

language. Observations of the style in action, empirical in nature, must follow. On top of them, hypotheses on 

the elicited properties of the style can be stated by inductive reasoning. These hypotheses and deduced 

predictions must then be tested by other observations or experiments before they become corroborated and 

eventually scientific facts. Finally the corroborated hypotheses and facts can then be used to develop a theory 

explaining how the style elicits the identified properties. 
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Figure 9: Activities of ASAM depicted in an UML activity diagram. 

Figure 9 depicts this situation graphically in an UML [32] activity diagram. It follows now a closer look on 

the single activities of the process: 

1. Identification and Definition: In this stage at the beginning of the process, a new architectural style 

must be identified. The new style must then be defined using a formal architectural description 

language. In literature a lot of such languages exists, but in this text the ALFA [12] framework is 

recommended as it allows composition of a new style from so called architectural primitives. 

2. Observation: The next activity deals with observing the style in action. The observations must be 

empirical in nature, which means they must be sensible, measurable, and repeatable. This text 

recommends the use of software metrics [44] and more specific the goal-question-metrics framework 

[11] to define how to gather empirical evidence of the style. 

3. Hypothesis: On top of the empirical observations one can now induce hypothesis about the properties 

elicited by the architectural style. Such hypothesis must be predictive and measurable and should 

therefore be stated formally using some kind of formal language. 

4. Hypothesis Testing: Once defined, the stated hypotheses must be tested and either accepted or 

rejected. In order to do so, predictions should be deduced from the hypotheses and checked for 

consistency with new observations or experiments. If the hypotheses fail, they must be modified and 

tested again or even abandoned, if they pass, they become corroborated and have a high probability 

of being true. A corroborated hypothesis must be tested again and can be used in the construction of a 

scientific theory. 

5. Theory: If a set of corroborated hypothesis exists, a theory emerges which explains how the style 

under investigation addresses its elicited properties. 

This text deals only with the first three steps of ASAM: first a new style is identified and defined formally 

using ALFA, then an empirical observation of the style in action follows and finally some hypothesis are 

derived by induction and described formally. The hypotheses must be further tested in order to become 

corroborated and reliably describe the elicited properties. Consider section 8 for a suggestion on future work. 
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4.2 ASAM in Action 

This section depicts the application of the early defined method for the definition and analysis of a new 

observed style. As stated above this text deals only with the first three steps of ASAM: the definition of the 

style, an empirical observation of the style in action and the derivation of some hypothesis by inductive 

reasoning based on the observation. 

4.2.1 Identification and Definition 

The investigated style is discovered in Microsoft‘s Dynamics AX product line. It follows an extensive 

research in current literature, as proposed by Yair and Timothy in [15] for a formal treatment of the style. 

Unfortunately only a rather shallow depiction of the style in form of some ―box-and-line‖ diagram can be 

found in [13], lacking rigor and reliability. Hence this work begins in section 5 by a formal definition of the 

style under investigation as proposed by ASAM. 

4.2.2 Observation 

Following ASAM, the next major step deals with an empirical observation of the style in action. The 

observation is performed in-context as suggested in [45] on a local Microsoft Dynamics AX partner 

supplying a variant for the product line. Empirical data is collected for 5 different customer implementations. 

However, due to timing conflicts, the data collection session has to be conducted before useful software 

metrics [44] are defined. Therefore data elevation is split in three distinct phases: data collection to collect 

rather general raw data; metrics definition to define the metrics needed for the empirical observation; and 

data extraction to get the defined metrics out of the general data. 

4.2.2.1 Data Collection 

To collect general raw data about the Microsoft Dynamics AX systems, a Microsoft Dynamics AX Code 

Metrics Collection (CMC) framework is developed for Microsoft Dynamics AX 4 and Microsoft Dynamics 

AX 2009 respectively. The framework is implemented using Microsoft‘s proprietary X++ language on top of 

a standard Microsoft Dynamics AX implementation. The framework enables easy development of individual 

tasks by simply implementing a given interface. The tasks can then be configured to run on specified entities 

belonging to defined layers of the system. Figure 10 depicts the logical part of the CMC tool in form of an 

UML [32] class diagram. 
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CMCClient
+current() : classId

+definitionString() : str

+isImplementing(in _dictClass : DictClass, ) : boolean

+moveNext() : boolean

+new() : void

+reset() : void

+toString() : str

#dictionary : Dictionary

#current : int

#interfaceId : classId

CMCTaskEnumerator

+addCommand(in _command, ) : void

+compare() : void

+destroy() : void

+init() : void

#new() : void

+setJobName(in name : str, ) : void

+writeToFile(in text : str, ) : void

+construct(in name : str, ) : CMCTaskManager

#jobName : str

#txIoWrite : TextIo

#fioPermission : FileIOPermission

#progressBar : SysOperationProgress

CMCTaskManager

+equals(in node : CMCTreeNode, ) : boolean

+getEnumerator() : CMCTreeNodeEnumerator

+getProperties() : Map

+getSourceCode() : str

+getTreeNode() : TreeNode

-hasID() : boolean

+hasSource() : boolean

+isEmpty() : boolean

+isSourceHTML() : boolean

+name() : str

#new() : void

+setTreeNode(in _treeNode : TreeNode, ) : void

+construct(in _treeNode : TreeNode, ) : CMCTreeNode

+unpackSource(in _source : Source, ) : Source

#treeNode : TreeNode

CMCTreeNode

+current() : CMCTreeNode

+definitionString() : str

+init(in _treeNode : TreeNode, ) : void

+moveNext() : boolean

#new() : void

+reset() : void

+toString() : str

+construct(in _treeNode : TreeNode, ) : CMCTreeNodeEnumerator

#iterator : TreeNodeIterator

#current : TreeNode

CMCTreeNodeEnumerator

+init(in _id : str, in _currentObject : TreeNode, in _lowerObject : TreeNode, ) : void

+getId() : str

+execute() : str

«interface»

CMCTask

+check(in parent : CMCTreeNode, in name : str = "", ) : Set

+destroy() : void

+execute() : str

+getCurrentObject() : CMCTreeNode

+getId() : str

+getLowerObject() : CMCTreeNode

+init(in _id : str, in _currentObject : TreeNode, in _lowerObject : TreeNode, ) : void

+insert(in parent : CMCTreeNode, in name : str = "", ) : void

-pinsert(in parent : CMCTreeNode, in name : str, ) : void

+reset() : void

+setCurrentObject(in _object : TreeNode, ) : void

+setId(in _identy : str, ) : void

+setLowerObject(in _object : TreeNode, ) : void

#doCheck(in parent : CMCTreeNode, in name : str) : boolean

#doInsert(in parent : CMCTreeNode, in name : str) : boolean

+search(in parent : CMCTreeNode, in name : str, ) : CMCTreeNode

+strContains(in _text : str, ) : CMCTreeNode

#identifier : str

#currentObject : TreeNode

#lowerObject : TreeNode

CMCTask_Basic

#elements0..*

#commands0..*

 

Figure 10: UML class diagram of the CMC tool. 

As one can recognize, the framework is developed in the command design pattern [4]. A CMCClient (Client) 

instantiates various CMCTask implementations (Command), provides the required TreeNode Objects 

(Receiver) and passes them to the CMCTaskManager (Invoker). Latter finally invokes the commands at a 

later time. Using the command pattern enables easy integration of progress bars and the execution of the code 

as batch at a specified time. Furthermore an abstract class CMCTask_Basic is provided to implement the 

default behavior of a CMCTask implementation. 
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To get a better understanding of the CMC tool, Figure 11 and Figure 12 depicts the graphical user interface of 

the framework where configurations can be made and finally started. Former figure shows the tab where the 

domain can be selected on which the tasks should run. To configure the domain, the type of entity and the 

layer must be specified. Latter figure shows the tab where the name of all the tasks appears and can be 

enabled or disabled. As one can recognize there is also the possibility to specify an output file where the 

measures will be stored. 

 

Figure 11: Graphical user interface of CMC 

showing the domain configuration 

 

Figure 12: Graphical user interface of CMC 

showing the task configuration 

In order to collect the general raw data of the investigated Microsoft Dynamics AX systems, 10 CMC task are 

implemented. Table 1 summarizes the tasks and the type of metric collected by each task. 

Task Name Task Description 

CMCTask_ClassMethods class name and the method names of the class in the current layer 

CMCTask_FormDesign form name and the control names of the form in the current layer 

CMCTask_FormMethods form name and the method names of the form in the current layer 

CMCTask_TableFields table name and the field names of the table in the current layer 

CMCTask_TableMethods table name and the methods names of the table in the current layer 

CMCTask_ClassMethods_mod class name and the name of its methods modified in the current layer 

CMCTask_FormDesign_mod form name and the name of its controls modified in the current layer 

CMCTask_FormMethods_mod form name and the name of its method  modified in the current layer 

CMCTask_TableFields_mod table name and the name of its fields modified in the current layer 

CMCTask_TableMethods_mod table name and the name of its methods modified in the current layer 

Table 1: Tasks implemented to collect raw data for further analysis. 

Finally the tasks are run by the CMC framework on all fife Microsoft Dynamics AX systems and the 

collected raw data is stored for further analysis after metrics definition. 
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4.2.2.2 Deriving Metrics 

In this section the goal-question-metrics framework [11] is used to derive useful software metrics [44] for the 

empirical analysis of the style. First of all the goal of the analysis is presented, leading to the questions 

threatened explicitly later in the section and finally the metrics are defined by the end of the section. 

The goal of the empirical observation might be defined as follows: 

 G: Observe the architectural style defined in section 4.2.1 in action to gather relevant information 

about the nature of the style. 

In order to narrow the focus, a set of 11 questions were directly derived to address this goal: 

 Q1: What is the size of the Base component? (M4) 

 Q2: How is the Base component partitioned into Code, Data and Design entities? (M1, M2, M3) 

 Q3: How many Code Elements were added to the Base component for each customer 

implementation?(M5) 

 Q4: How many Code Elements of the Base component were modified for each customer 

implementation?(M6) 

 Q5: How many Data Elements were added to the Base component for each customer 

implementation?(M7) 

 Q6: How many Data Elements of the Base component were modified for each customer 

implementation?(M8) 

 Q7: How many Design Elements were added to the Base component in each implementation?(M9) 

 Q8: How many Design Elements of the Base component were modified for each customer 

implementation?(M10) 

 Q9: How many Code Elements of the Base component were modified for each single Entity of each 

customer implementation?(M11) 

 Q10: How many Design Elements of the Base component were modified for each single Entity of 

each customer implementation?(M12) 

 Q11: How many Data Elements of the Base component were modified for each single Entity of each 

customer implementation?(M13) 

Before metrics can be derived on top of the above questions, the notion of Code, Data and Design Element 

has to be defined. Each Element reflects an atomic unit of the corresponding type. For the Code Element, the 

unit must comprise a set of computational logic and is therefore defined as method. Data Elements represent 

the atomic unit of data which is defined as field and Design Elements encapsulate the atomic design unit and 

are defined as design control. Another primitive which needs to be defined is the notion of an Entity. An 

Entity is defined as a collection of Elements of some type. Thus, a class in the object oriented paradigm 

represents an Entity composed of Code Elements. A form in Microsoft Dynamics AX however is an Entity 

comprising Design and Code Elements. On top of these primitives a set of functions can be defined to support 

the metric development: 
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With these primitives one can now define following metrics to answer the questions identified earlier in this 

section: 

                                      

                                           

                                               

             

                                      
                                              

                                      

                                           
                                                   

                                           

                                               

                                                       

                                                

      
           

                            

      
           

                                 

      
             

                                     

To get a better understanding of how each single component of the GQM directly influenced the development 

of other components, Figure 13 depicts the relationship of goal, questions, and metrics. 

 

Figure 13: Graphical representation of the GQM showing the relationship 

between goal, questions, and metrics. 
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4.2.2.3 Data Extraction 

In order to extract the derived metrics from the general data collected by the CMC tool, another tool is 

developed in java and groovy. Figure 14 shows the UML [32] class diagram of the Code Metrics Analysis 

(CMA) tool. A groovy script is used to parse the general raw data obtained by the CMC tool and construct an 

in memory model of this data using the corresponding Java classes. Finally the script uses the in memory 

model to calculate the derived metrics and outputs the results into a new file. 

 

Figure 14: UML class diagram of the CMA tool. 

The data extracted by the CMA tool is finally imported into Microsoft Excel for further analysis. The detailed 

report of the data can be found in section 6. 

4.2.3 Hypothesis 

On top of the insights uncovered by the empirical observation a set of related hypotheses is derived. Section 7 

provides a formal model on top of the empirical evidence, consisting of 4 hypotheses on properties elicited by 

the style. A call to further test the derived hypotheses follows in section 8 where suggestions for future work 

can be found. 

.  
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5 Identification and Definition 

The following section defines the observed style formally, by first depicting a high level structural 

representation of it in xADL‘s [40] canonical visualization Archipelago [46] before leveraging the ALFA 

framework [12], threatened in  detail in section 3, to characterize the style and decompose it into its 

architectural primitives. The section concludes with an analysis of the connector type, which is a crucial 

component for every style, thus applying the framework proposed by Mehta et al. in [31]. 

5.1 A new Style emerges: Partial Refinement 

The style, named Partial Refinement, can be classified according to the outline used by Taylor et al. [3] into 

the class of layered styles. To provide a rough overview of the style, Figure 15 depicts its structure according 

to xADL‘s visual representation Archipelago: 

 

Figure 15: Partial Refinement architectural style 

depicted in xADL’s visual representation 

Archipelago. 

As one can recognize, the architectural style is composed of a Selector connector, a Base component, and one 

or more Refinement components. The Base component contains the standard logic of the application 

partitioned through a collection of Entities of different types. Each Entity is further decomposed into 

Elements of some type. Each Refinement component can then adapt the standard application logic by adding 

new Entities or changing the behavior of some of the Entities. Changing the behavior of an Entity can be 

achieved by adding new Elements to or modifying the properties of some existing Elements of the Entity. 

The Selector connector coordinates the execution of the application by selecting the correct component and 

transferring data and control to the Entity in this component. A detailed treatment of the Selector connector 

follows in section 5.3. 
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5.2 Definition 

The following section defines the style presented above formally to provide a robust foundation for further 

investigation. Table 2 describes the style first using the five-way characterization proposed in [12]: 

Data Each single Element of each Entity has a unique identifier within each component. However 

the identifier is shared between components to enable adaptations of an Element through 

Refinement components. 

Each Element further executes within a well defined context. This context is defined either 

by the Elements Entity or it can be passed explicitly by the Elements caller. Latter could be 

parameters in case the Element is a method or configurations if the Element is a design 

control. 

A simple boolean value is used to acknowledge the availability of an Element in a 

component. 

Structure The style is composed of one Base component which contains the general application logic 

and a set of Refinement components which can adapt the application by enhancing or 

modifying the Base component. The logic is distributed across so called Entities of different 

types belonging to some component. Each Entity is further decomposed into Elements 

which represents the atomic units in the architectural style. By implementing an Element in 

a Refinement component, the behavior of the corresponding Entity in the Base component 

can be modified. 

Furthermore one Selector connector coordinates the execution of the application. If an 

Entity needs to consider another Entity, it calls on the Selector which then delegates the call 

to the Entity in the correct component. 

Interaction The Selector blocks if he checks the availability of the Entity in the refinement components. 

However the calling for the execution of an Entity by the components and the actuating of 

the execution of the Entity are non blocking interactions. 

Behavior If a component needs to consider an Entity, it calls on the Selector connector. The connector 

then checks each Refinement component on the availability of the Entity. After being 

notified by all components about the availability of the Entity, the Selector considers a 

priority list and actuates the execution of the Entity on the component with the highest 

priority. 

Topology A Selectors call port is connectable to a components execution port. Furthermore, a 

components call port is connectable to the Selectors select port. The Selectors check port is 

connectable to a Refinement components confirm port. 

Table 2: Five-way characterization of the Partial Refinement architectural style. 

On top of this characterization one can now decompose the style into its primitives. The identified Datum 

primitives in this style are the Elements identifier, the execution context and a boolean value to acknowledge 

availability. There are 3 Particle primitives identified, a Base component, some Refinement components and 

a Selector connector. There is further one Output portal for the Base component to call on the Selector for 

executing an Entity and one Input portal to be notified about the need to execute some Entity. Similarly, a 

Refinement component has one Output portal for demanding the execution of an Entity and one Input portal 

to get incoming execution calls. However the Refinement component has also a Twoway portal to get notified 

about the need of executing an Entity and eventually confirm the availability of the Entity in the component. 

The Selector connector is provided with an Output portal to demand the execution of an Entity and an Input 

portal to get notified about the demand of executing an Entity. Furthermore the Selector provides a Twoway 

portal to check on the existence of an Entity in all Refinement components. Figure 16 shows the graphical 

composition of the style, uncovering the internal behavior of the Selector connector. 
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Figure 16: “Architectural primitives” forming the elements of the Partial Refinement architectural style. 

From the above figure, the interaction characteristics of the style become clear. The Selectors call Output 

portal is connected to the execute Input portal of the Base and Refinement components through a Duct with 

functions one holds and none loses. Similarly, the components call Output portal is connected with the 

Selectors select Input portal using a Duct with one holds and none loses. Finally, the Selectors check Twoway 

portal is connected with the Refinement components confirm Twoway portal through a zero holds, and none 

loses Duct. Note the Relay used by the Selector connector to connect the select Input portal with the Twoway 

check portal to call on each Refinement component for the availability of the required Entity. 

5.3 The Selector Connector 

As for all styles the connector plays a fundamental role for this style and hence requires a deeper analysis. 

Thus, the connector classification framework proposed by Mehta et al. [31], and described in more detail in 

section 3, is leveraged in the following analysis of the Selector connector. 

The Selector connector provides three types of services, which are communication, coordination, and 

facilitation services. The connector is a so called composite or higher order connector, composed of two base 

types: event connector, providing communication and coordination services; and distributor connector, 

providing facilitation services. The Selector connector sends and receives data through asynchronous 

notifications called events. An event arrives as an Entity in a component needs to call on another Entity. The 

Selector checks the availability of the Entity in Refinement components and produces a new event to notify a 

component about the need to execute one of its Entities. Furthermore, the connector acts as mediator and 

distributes communication and coordination information among different components according to their 

priority. 
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6 Observation 

In the following section the results of the empirical observation of the Partial Refinement architectural style 

in action are presented and analyzed. The metrics derived in section 4.2.2.2 were applied to 5 systems build 

according to the Partial Refinement style defined earlier. Two of them are Microsoft Dynamics AX 4, the 

other three Microsoft Dynamics AX 2009 implementations. The following two sections provide a general 

overview of the Base component of Microsoft Dynamics AX 4 and Microsoft Dynamics AX 2009 

respectively, a description of the domain for which to refine the Base component, and an overview of the 

Refinement components for each implementation. It follows a deeper insight into the nature of the 

Refinement components by a detailed analysis of the modified Elements for each of the Entities in the Base 

component. Finally the section concludes with a statistical analysis of the observed data in section 6.4. 

6.1 Case 1 

The first observations were done on two implementations of Microsoft Dynamics AX 4, whose Base 

component is composed of three main types of Entities: Code Entities, containing Code Elements; Data 

Entities, composed of Code Elements and Data Elements; and Design Entities, comprising Code Elements 

and Data Elements. 

 

Figure 17: Entity types in Microsoft Dynamics AX 4 

Base component. 

Figure 17 depicts the distribution of Entity Elements across the different types. More than 50% of Elements 

in the Base component are Code Elements belonging to Code Entities, Design Entities or Data Entities 

respectively. More than a fourth of the Elements are Design Elements belonging to Design Entities and only a 

tenth of the Elements are of type Data belonging to Data Entities. 

Before proceeding with the observation, it follows now a brief description of the two subjects, that is, the 

refined Microsoft Dynamics AX 4 implementations. 

 

Code
57%

Design
31%

Data
12%
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6.1.1 Subject 1-1 

The first observation was done on a customization of Microsoft Dynamics AX 4 for a wholesales company 

with 74 users. The company is located in Germany and supplies instruments for the car industry with an 

assortment of about 10000 goods for almost 55000 customers. 

6.1.2 Subject 1-2 

The second observation was done on a Microsoft Dynamics AX 4 customization for a software house with 

around 50 users. The company with headquarter in Italy has branch offices in Germany and Hungary and 

supplies about 10 products for 100 customers. 

6.1.3 Results 

The following figures provide an overview of the refinement done on each type of Element for each of the 

two subjects. In these figures, the blue pie depicts the number of modified/added Elements in Refinement 

components relative to the total number of Elements in the Base component. The other pie presents the 

distribution of these modifications/additions across the different subjects and the number of Elements 

modified/added respectively. The red part represents the modifications/additions common to both of the 

refinements, while the green and violet parts show the number of modifications/additions performed 

exclusively for one refinement. Thus, the total number of refinements done on one of the subjects comprises 

the red part (common refinements) and the corresponding other part (exclusive refinements). 

Figure 18 depicts the modification of existing Code Elements by Refinement components and Figure 19 

shows the number of Code Elements added by the Refinement components.  

 

Figure 18: Modifications of Code Elements for 

each subject. 

 

Figure 19: Addition of Code Elements for each 

subject. 
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Figure 20 shows the number of Design Elements modified for each of the subjects and Figure 21 shows the 

number of Design Elements added by the Refinement components. 

 

Figure 20: Modifications of Data Elements for 

each subject. 

 

Figure 21: Additions of Data Elements for 

each subject. 

Figure 22 presents the number of Data Elements which were modified by Refinement components and Figure 

23 shows the number of Data Elements added for each subject. 

 

Figure 22: Modifications of Design Elements 

for each subject. 

 

Figure 23: Additions of Design Elements for 

each subject. 

Considering the above figures, it appears that for each type of Element, the number of additions of such 

Elements by Refinement components is far higher than the number of modifications on existing Elements. 

Another impression from the above figures is that the modifications and additions of Elements exclusive for 

one of the systems (violet/green part) is slightly higher than the number of modified or added Elements 

common to both of the systems. Furthermore it seems that there is a relationship between the number of 

added Elements and the number of Elements modified. Finally if one considers the numbers in the figures, it 

seems that there is a significant difference on the number of modifications/additions, depending of the type of 

the Elements. Section 6.4 applies some statistics to further investigate on these questions. 
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6.2 Case 2 

Further observations were done on three implementations of Microsoft Dynamics AX 2009. As in its 

predecessor, the Base component is composed of three major types of Entities: Code Entities, containing 

Code Elements; Data Entities, composed of Code Elements and Data Elements; and Design Entities, 

comprising Code Elements and Design Elements. 

 

Figure 24: Entity types in Microsoft Dynamics AX 

2009 Base component. 

Figure 24 depicts the distribution of Entity Elements across the different types. Again, more than 50% of 

Elements are Code Elements, more than a fourth comprise Design Elements, and only a tenth represents Data 

Elements. 

However, before proceeding with the observation, it follows now a brief description of the three subjects for 

which the Base component was refined. 

6.2.1 Subject 2-1 

The third observation was done on a Microsoft Dynamics AX 2009 customization for a wholesales company 

with around 40 users. The company employs around 50000 employees distributed across 300 units worldwide. 

The company supplies about 7000 products through 17000 clients. 

6.2.2 Subject 2-2 

The fifth observation was done on a customization of Microsoft Dynamics AX 2009 for a wholesales 

company with about 12 users. The company is a small company located in Swiss. 

6.2.3 Subject 2-3 

The last observation was done on an implementation for a wholesales company with 65 users. The company 

is located in Canada and supplies about 50000 products.  
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6.2.4 Results 

Again, the following section presents an overview of the refinement done on each type of Element for each of 

the three subjects. In the following figures, the blue pie depicts the number of modified/added Elements by 

Refinement components, relative to the total number of Elements in the Base component. The other pie 

presents the distribution of these modifications/additions across the different subjects and the number of 

Elements modified/added by Refinement components. The red part represents the modifications/additions 

common to all three subjects, while the green, violet and cyan blue parts represent commonalities of only two 

of the subjects and the pink, light blue and orange parts represents the number of Elements modified/added 

exclusive for each single subject. 

Figure 25 shows the number of Code Elements which were modified through Refinement components. On 

the other hand, Figure 26 shows the number of Code Elements added by these components. 

 

Figure 25: Modifications of Code Elements for 

each subject. 

 

Figure 26: Additions of Code Elements for 

each subject. 

Figure 27 shows the number of Design Elements modified for each of the subjects and Figure 28 depicts the 

number of Design Elements added in order to refine the Base component. 

 

Figure 27: Modifications of Data Elements for 

each subject. 

 

Figure 28: Additions of Data Elements for 

each subject. 
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Finally, Figure 29 presents the number of Data Elements modified for each refinement and Figure 30 presents 

the number of Data Elements added in Refinement components. 

 

Figure 29: Modifications of Design Elements 

for each subject. 

 

Figure 30: Additions of Design Elements for 

each subject. 

As in the first case presented in section 6.1, it seems that the number of added Elements is several times 

higher than the number of modified Elements. Furthermore again it seems that the set of Elements reused 

across different systems decreases with the number of systems for which the Elements can be reused. The 

figures above strengthen the assumption that there might be a relationship between the number of added 

Elements and the number of Elements modified. Finally the suspicion that there is a significant difference on 

the number of modifications/additions, depending of the type of the Elements will be corroborated by the 

above figures. In section 6.4 a statistical analysis on the data is performed to investigate these assumptions. 

6.3 Modifications 

The following section now takes a closer look on the nature of the modified Entities. Hence, for each of the 5 

subjects it depicts a graphical representation of the modifications done for each Entity. In the following 

figures, the horizontal axis represents the different Entities modified by a subject, while the vertical axis 

represents the percentage of Entity Elements. The blue area shows the percentage of Elements not modified 

by Refinement components, while the red area depicts the percentage of Elements modified and reused for 

more than one subject. The yellow part however represents the modifications performed exclusively by one 

of the subjects. 
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6.3.1 Subject 1-1 

Figure 31 depicts a graphical representation of the modification of Code Entities for subject 1-1. Figure 32 on 

the other hand represents the modifications done on the same subject, but on Design Entities and finally 

Figure 33 presents the modifications done on Data Entities for subject 1-1 again. 

 

Figure 31: Modified Code Elements per Entity modified in subject 1-1. 

 

Figure 32: Modified Design Elements per Design Entity modified in subject 1-1. 

 

Figure 33: Modified Data Elements per Data Entity modified in subject 1-1. 
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6.3.2 Subject 1-2 

Figure 34 shows the modifications on Code Entities for subject 1-2 while Figure 35 depicts modifications on 

Design Elements for the same subject. Figure 36 on the other hand represents modifications of Data Elements 

for subject 1-2. 

 

Figure 34: Modified Code Elements per Entity modified in subject 1-2. 

 

Figure 35: Modified Design Elements per Design Entity modified in subject 1-2. 

 

Figure 36: Modified Data Elements per Data Entity modified in subject 1-2. 
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6.3.3 Subject 2-1 

Figure 37 depicts a graphical representation of the modification of Code Entities for subject 2-1. On the other 

hand, Figure 38 represents the modifications done on the same subject, but on Design Entities and finally 

Figure 39 presents modifications done on Data Entities for subject 3-1 again. 

 

Figure 37: Modified Code Elements per Entity modified in subject 2-1. 

 

Figure 38: Modified Design Elements per Design Entity modified in subject 2-1. 

 

Figure 39: Modified Data Elements per Data Entity modified in subject 2-1. 
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6.3.4 Subject 2-2 

Figure 40 depicts graphically the modification of Code Entities for subject 2-2. Figure 41 on the other hand 

represents the modifications done on the same subject, but on the Design Entities and finally Figure 42 

presents the modifications done on Data Entities for the same subject. 

 

Figure 40: Modified Code Elements per Entity modified in subject 2-2. 

 

Figure 41: Modified Design Elements per Design Entity modified in subject 2-2. 

 

Figure 42: Modified Data Elements per Data Entity modified in subject 2-2. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

common3

common2

common1

single

base

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

common3

common2

common1

single

base

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

common3

common2

common1

single

base



 

41 

 

6.3.5 Subject 2-3 

Figure 43 depicts the modification of Code Entities for subject 4-3. On the other hand, Figure 44 represents 

the modifications done on the same subject, but on the Design Entities and finally Figure 45 presents the 

modifications done on Data Entities for subject 4-3 again. 

 

Figure 43: Modified Code Elements per Entity modified in subject 2-3. 

 

Figure 44: Modified Design Elements per Design Entity modified in subject 2-3. 

 

Figure 45: Modified Data Elements per Data Entity modified in subject 2-3. 
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From the above figures one might assume, that modifications on Entities of any type are fine grained and 

cross cutting. In other words, it seems that modifications of Entity Elements are equally distributed across the 

modified Entities and that these modifications comprise only a low percentage of all the existing Elements of 

an Entity. The following section now tries to investigate this question by a statistical analysis on the observed 

data. 

6.4 Discussion 

The following section presents a short statistical analysis on the above observations to investigate the 

questions raised in the previous sections; thus laying the foundation for the derivation of the hypotheses 

stated in section 7. The analysis is split into three major parts: first of all it takes a closer look on the 

relationship of additions and modification of Elements in Refinement Components. It follows an analysis of 

the degree of commonalities for the refined Elements. Finally the section concludes with a deeper treatment 

of the Element modified per Entity. For the avoidance of doubt, it should be noted that the author is aware of 

the fact that 5 samples are by no means statistically relevant, but as stated earlier, this text tries to reason 

inductive on base of a small sample to derive a set of hypothesis which are asked to be further tested. Hence 

the following analysis tries to only get an insight into the nature of the style and not to statistically proof 

some claims. 

6.4.1 Addition vs. Modification 

The following section presents an analysis of the different kinds of refinement. Additions of new Elements 

and modifications of existing Elements represent the two ways a Refinement component can adapt a Base 

component. The first impression from the earlier observation is that former kind of refinement, addition of 

new Elements, are multiple times higher than modifications of existing Elements. The second feeling is that 

there must be a kind of relationship, linear in nature, between the two kinds. It seems rational that an 

increasing number of new Elements require an increasing number of modifications to existing Elements in 

order to integrate the new Elements. 

Figure 46 depicts graphically the average number of additions and modifications done to the Base component 

in order to refine it for the different domains. The error bars depicts the standard deviation to the mean, thus 

almost 70% of the values lie within these bars. 

 

Figure 46: Average number of Elements added/modified by each subject with the corresponding 

standard deviation. 
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From the above figure the suspicion that the number of additions is multiple times higher than the number of 

modifications will be substantiated. Also if the error bars are quite wide, it seems that adding new Elements 

will be the dominant kind of refining a system while modifications will only help to integrate the new 

Elements. 

Figure 47 engage into a possible relationship of the two kinds of refinements. The horizontal axis represents 

the number of new Elements, while the vertical axis represents the number of Elements modified. Each entry 

in the graph depicts the combination of modifications and additions done for the refinement of one type of 

one of the subjects. Furthermore the regression line is shown with the corresponding correlation coefficient. 

 

Figure 47: Relationship between the numbers of Elements modified and the number of Elements 

added for each type and each subject. 

From the above figure, it seems that indeed there is a linear relationship between the number of additions and 

modifications performed for the refinement of one type of one subject. Also if a correlation coefficient of 

0.62 is not sufficient to confirm statistically an eventual relationship, due to the low number of samples it 

could be an indicator for the existence of such a relationship. 

6.4.2 Other Relationships 

An interesting question which emerges from the above observation would be whether or not there exists a 

relationship between the number of additions and modifications respectively, and the reuse potential of such 

refinements. One might expect that the number of domains for which an addition or modification can be used 

decreases with the size of the set of refinements. Furthermore the question arises whether there is a 

significant difference in the number of modifications or additions respectively for different types of elements. 

From the observation it seems that the type of element has no significant impact on the number of additions 

or modifications respectively. 
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To investigate the above questions, Figure 48 depicts the number of additions and modifications of Elements 

grouped by the number of systems using these Elements. Furthermore an error bar depicts the standard 

deviation from the mean. 

 

Figure 48: Number of added/modified Elements according to their reuse potential. 

From the width of the error bars it seems that the distribution of the data from the observation is rather broad 

and therefore not considered significant for deriving any hypotheses. 

Figure 49 depicts the number of new Elements added or Elements modified for each of the three types. Again 

an error bar shows the standard deviation to the average value. 

 

Figure 49: Number of added/modified Elements according to the Element type. 

At a first impression the figure seems to suggest a significant difference in the number of additions and 

modifications respectively for different kind of Element types. But reflecting on section 6 one can see that in 
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both cases, Microsoft Dynamics AX 4 and Microsoft Dynamics AX 2009 over 50% of the Elements of the 

base component are Code Elements, on the other hand, 30% are Design Elements and only 10% comprise 

Data Elements. Hence, the differences uncovered by the above figure follows logically from the distribution 

of Element types in the Base component and do not reflect any causal relationship of Element type and 

number of additions or modification of Elements. 

6.4.3 Modifications 

Considering the observation presented in section 6.3 on the modifications of Elements for single Entities, it 

appears that the modifications done on an Entity are rather fine grained, that is, small in size and distributed 

equally among the modified Entities. Another interesting question arises from the observed data, namely 

whether there is a relationship between the number of added Elements and the percentage of modified 

Elements per Entity. It seems obvious that a high number of Elements added implies a high percentage of 

modifications to single Entities in order to integrate the new Elements. 

Figure 50 shows the average percentage of modified Entities for each of the three types, grouped per subject. 

The error bar on each of the single bars depicts the standard deviation from the mean, i.e. the boundary 

capturing about 70% of the values. 

 

Figure 50: Modified Elements per Entity for each subject for each type. 

Due to the high value of the standard deviation, the above figure seems to reject the assumption that the 

modifications are equally distributed among the modified Entities. Nevertheless the figure confirms the claim 

that the number of modified Elements per Entity is rather small, that is less than 50%. 

In order to consider another view on the number of modified Elements per Entity, Figure 51 depicts the same 

data as Figure 50 in a different way. The percentage of modifications to existing Entities is represented as a 

boxplot where the boxes capture values from the lower to the upper quartiles and the whiskers shows the 

variations from the 0,025 Percentile up to the 0,975 Percentile. 
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Figure 51: Modified Elements per Entity for each subject for each type as boxplot. 

The above figure shows again a breadth distribution of the values, mainly for the upper 50%. Nevertheless all 

the boxes reside below the 0.25 boundary which confirm the assumption of a fine grained nature of the 

modifications to existing Entities. 

In Figure 52 one can recognize the relationship of the number of added Elements and the number of Elements 

modified per Entity. The horizontal axis represents the percentage of modified Elements per Entity, while the 

vertical axis represents the number of added Elements. The entries in the graph depict the combinations of 

added Elements per subject and modified Elements per Entity. Furthermore the corresponding regression line 

is shown with the proper correlation coefficient. 
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Figure 52: Relationship between the numbers of Elements added by each subject and the 

modifications to Entities of each type by the same subjects. 

The above figure not only denies the existence of a relationship between the values, but with a correlation 

coefficient of 0.045 induces the assumption that there is no relationship at all. This might be an interesting 

observation since it contradicts the obvious claim that a high number of introduced Elements imply a likewise 

high number of modifications to existing Elements. 

Again the author notes to be aware of the fact that such a small sample has no statistical significance, but as 

mentioned above this section should only lay the foundation to inductively derive a set of hypotheses. The 

following section therefore tries to state a set of hypotheses about the Partial Refinement architectural style 

founded in the analysis done in this section. 
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7 Hypothesis 

The following section tries to leverage the insights obtained from section 6 to derive a set of related 

hypotheses on the properties elicited by the Partial Refinement architectural style defined in section 5. 

In order to state the hypotheses, first a set   is defined as the set of all possible Entity Elements and   as the 

set of all possible Entities, where each     aggregates some of the elements of L. Furthermore, a bijective 

function          is defined to capture this relationship between Entity and corresponding Elements. A 

Base component   can now be defined as an element of the powerset of all possible Entities  :       . 

In order to refine a Base component, a Refinement component uses two kinds of mechanisms: adding new 

Elements by adding new Entities or enhancing existing Entities, and modifying existing Entities by modifying 

their Elements. Figure 53 depicts this situation graphically, where the wine red circle represents a Base 

component and the other circles Refinement components respectively. 

 

Figure 53: Refinement of a Base component by 

Refinement components. 

As one can recognize from the above figure, a refined system is composed of three kinds of Entities: original, 

unaltered Entities of the Base component, Entities modified by Refinement components, and new Entities 

added by Refinement components. For this purpose, three functions should be defined as          , to 

capture these relationships respectively:   as the function retaining all original Entities from the Base 

component;   as the function capturing new Entities added by Refinement components; and   as a function 

returning all Entities modified by Refinement components. Let us capture now the implementation of a 

system according to the Partial Refinement architectural style within a function   defined as              

and composed of three distinct components: 

                       

A conceptual overview of the function   used to refine the Entities modified by Refinement components is 

visualized in Figure 54. The wine red circle represents an original Element of the Entity, and the other circles 

modifications to this Element or additions of new Elements by Refinement components. 
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Figure 54: Modification of an Entity in the Base component by 

modifying existing and adding new Entity Elements. 

As one can recognize from the figure above, function    refines base Entities by using two kinds of 

mechanisms: adding new Elements to an Entity or modifying existing Elements. Hence, function   can be 

defined as a mapping from      to another      as            . The function can further be described 

as follows: 

                                  

In other words, function   applies functions   ,    and    respectively to each element   of  . Thereby, 

functions   ,    and    are defined as        and capture original, modified and added Elements for 

each Entity respectively. Furthermore function   applies the inverse function for   to the union of the result 

sets of the functions    ,    and    to get the corresponding Entity comprising the new set of Elements. 

Finally, the obtained Entity is added to the result set of function  . 

7.1 Hypothesis 1: Addition over Modification 

From the analysis presented in section 6.4.1 it seems that refining the Base component requires far more 

additions of new Elements than modifications to existing Elements. This hypothesis can be captured in form 

of a relationship between some of the above functions: 
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7.2 Hypothesis 2: Relationship between Addition and Modification 

Another assumption derived by the analysis in section 6.4.1 is that there exists a linear relationship between 

the number of added Elements and the number of Elements modified, which means that the number of 

Elements modified depends on the number of new Elements added. This hypothesis can be stated formally as: 

        

        

        

        

           

        

   

7.3 Hypothesis 3: Fine grained Modifications to existing Entities 

This text further observed that only fine grained modifications to existing Entities are needed. Hence, the 

number of Elements modified for each Entity modified will reside below some Base-component-specific 

value    

               

        

 

Furthermore,   is defined as a function, mapping a Base component to a percentage value of modifications 

needed for an Entity;   is observed to be lower than 25% for 75% of the Entities. 

7.4 Hypothesis 4: Constant Modifications to existing Entities 

A last hypothesis is that there is no relationship between the number of added Elements and the percentage of 

modifications needed for an Entity. This means that independently on how many Elements will be added by a 

refinement, the modifications to existing Entities will remain as proposed by hypothesis 3. However, the 

increasing number of added Elements will be compensated by an increasing number of modified Entities as 

proposed in hypothesis 2. Consider therefore two refinements, with Base components B1 and B2 respectively, 

then this hypothesis can be stated formally as: 

        

         

        

         

         

         

        

         

                 

The hypotheses presented in this section were derived by inductive reasoning on top of the empirical 

observations of the style in action. However, before the stated hypotheses become reliable knowledge about 

the elicited properties of the Partial Refinement architectural style, they require further testing. Hence the 

next section calls on future work testing the hypotheses and its predictions to finally corroborate them and 

eventually make them scientific facts. 
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8 Conclusions and Future Work 

Driven by the research questions identified in section 1.1, this text began with an extensive literature review 

on software architecture, architectural styles, software adaptability, and software product families in section 3. 

In doing so, the text identified a lack of reliability in current approaches to investigate software architectural 

styles. Such styles are defined informally and elicited properties are derived intuitively, lacking any empirical 

evidence. Furthermore the review of current literature uncovered the absence of a formal definition and 

analysis of the architectural style driving the development of Microsoft Dynamics AX implementations. 

Thus, the text presented the Architectural Style Analysis Method (ASAM) in section 4.1, a method derived by 

the standard scientific method [1] and adapted for investigating software architectural styles. ASAM is 

presented as a process of 5 distinct activities, leading to the acquisition of reliable knowledge about 

architectural styles. In section 4.2, ASAM was adapted for the purpose of investigating a new architectural 

style. Thus, in section 4.2.2.1 a tool was presented to collect raw data about the style in action. In section 

4.2.2.2 a set of metrics were derived using the goal-question-metrics framework [11] to analyze the obtained 

raw data. Finally in section 4.2.2.3 another tool was presented to obtain measures of the defined metrics from 

the collected data. 

Furthermore, ASAM is applied in the analysis of a new architectural style guiding the development of 

Microsoft Dynamics AX systems: the observed style was first defined formally as Partial Refinement 

architectural style in section 5 by applying the ALFA framework [12] and investigating closer the Selector 

connector as a crucial component of the style. It followed an empirical observation of the style in action on 5 

Microsoft Dynamics AX [13] implementations in section 6 with a short statistical analysis of the obtained 

data in section 6.4. On top of that observations, a set of 4 related hypotheses are derived and presented 

formally in section 7. 

However, the work could only address 3 of the 5 activities proposed by ASAM and it lacks the testing of the 

hypothesis and the development of a scientific theory relating the hypotheses in order to explain the nature of 

the Partial Refinement architectural style. Furthermore, ASAM should be applied to more architectural styles 

in order to obtain reliable knowledge of these styles, which can be used to reliably predict properties elicited 

by these styles. 
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