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Abstract

The diploma thesis is devoted to a conceptual modeling approach for hetero-homogeneous hi-
erarchies with multiple levels of abstraction. These hierarchies are homogeneous with respect
to a common schema, defined by a single root node and prescribed for all sub-hierarchies,
and are heterogeneous with respect to refined schemata for sub-hierarchies. In particular, the
approach relies on so-called Generalized Multi-Level Objects and Generalized Multi-Level Rela-
tionships, which permit to represent objects and relationships among these objects at different
levels. Both constructs can be arranged in concretization hierarchies, which compromise dif-
ferent aspects of abstraction hierarchies like e.g. aggregation, classification and generalization.

In addition, a semantic-preserving mapping of such hierarchies to the decidable fragment of
OWL (Web Ontology Language) is presented to render the approach from conceptual mod-
eling to the semantic web and ontological engineering. By suitably combining closed world
assumption and open world assumption, a meta-modeling facility in OWL is obtained, where
OWL semantic reasoners allow e.g. consistency checks and respective query executions.
Finally, data can be accessed in the semantic web at different abstraction levels of hetero-
homogeneous hierarchies, while its quality is improved.

In the diploma thesis we mainly continue the ideas of Neumayr et al. [2009a,b, 2010], which
are partially revised, compared to and complemented with own ideas and results.



Kurzfassung

Die vorliegende Diplomarbeit widmet sich einem konzeptionellen Modellierungsansatz für
hetero-homogene Hierarchien mit mehreren Abstraktionsebenen. Diese Hierarchien sind ho-
mogen im Hinblick auf ein gemeinsames Schema, welches durch ein Wurzelelement definiert
und für alle Unterhierarchien vorgeschrieben wird, und heterogen im Hinblick auf verfeinerte
Schemata für Unterhierarchien. Im Konkreten basiert der Ansatz auf so genannten Generali-
zed Multi-Level Objects und Generalized Multi-Level Relationships, welche es gestatten, Objekte
und Beziehungen zwischen diesen Objekten in verschiedenen Abstraktionsebenen darzustel-
len. Beide Konstrukte können in Konkretisierungshierarchien angeordnet werden, welche
unterschiedliche Aspekte von Abstraktionshierarchien, wie z.B. Aggregation, Klassifikation
und Generalisierung, in sich vereinigen.

Zusätzlich wird eine Semantik erhaltende Abbildung von diesen Hierarchien auf den ent-
scheidbaren Teil von OWL (Web Ontology Language) vorgestellt, um den konzeptionellen
Modellierungsansatz auf das Semantische Web und das Arbeiten mit Ontologien zu über-
tragen. Durch geeignetes Kombinieren der Closed World Assumption und der Open World
Assumption entsteht eine Meta-Modellierungstechnik in OWL, wobei OWL Reasoners z.B.
Konsistenzprüfungen und entsprechende Abfragen erlauben. Schlussendlich kann auf Daten
im Semantischen Web in unterschiedlichen Abstraktionsebenen innerhalb hetero-homogener
Hierarchien zugegriffen und gleichzeitig deren Qualität verbessert werden.

In dieser Arbeit werden im Wesentlichen die Ideen von Neumayr et al. [2009a,b, 2010] aufge-
griffen, teilweise überarbeitet und mit eigenen Ideen und Resultaten verglichen und ergänzt.
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1 Introduction

In this introductory chapter some background information about the semantic web, ontolo-
gies and description logic is provided, and in this context the relevance of multi-level modeling
is revealed. Afterward the purpose and main goals of this diploma thesis are presented. The
chapter finishes with an outline of the present work.

1.1 Semantic Web, Ontologies and OWL

Let us first sketch why the semantic web, see, e.g., Berners-Lee et al. [2001], requires ontolo-
gies and why description logic is well-suited for ontology languages. Semantic web aims at
making intelligent web pages meaningful for machines. Thus, it intends to provide machine-
understandable and -processable web resources, which can be shared by agents, like automated
tools, search engines, human users, etc. In order to ensure a common understanding of the
agents an ontology is required attached with well-defined formal semantics. An ontology is
a collection of concepts, where all agents have the same interpretation of the concepts with
respect to the ontology. The use of ontologies requires a suitable ontology language. Its se-
mantic should be formally specified and its expressive power should be adequate for defining
relevant concepts at a detail level of interest. In summary, ontologies play a pivotal role,
because it provides a common and shared agreement of a specific domain. In current com-
puter science, ontology is said to be an “agreement about a shared, formal, explicit and partial
account of a conceptualization”, see Spyns et al. [2002] and references therein. The ontology
contains the vocabulary (concepts and terms) and the definition of these concepts and their
relationships for a specific domain.

Currently, the Web Ontology Language (OWL), a W3C recommendation, is to be the de-facto
standard for modeling ontologies in the semantic web. The logical underpinning for OWL is
provided by description logics (DLs) (as the decidable fragment of first-order logics (FOL) in
terms of predicate logic), which represents a family of knowledge representation formalisms
with well-understood semantics and computational properties. OWL can be seen as an ex-
pressive schema language that can be used to provide flexible access to data. High quality
ontologies are crucial for the semantic web and their construction and evolution greatly de-
pends on the availability of well-defined semantics and efficient reasoning tools. DL contains
both such that they are typical candidates for ontology languages, i.e., it can be used as a for-
malism for representing and reasoning about ontologies. In particular, the design of OWL is
based on the SH family of DLs, where, in particular, OWL 2 DL is based on SHROIQ, see,
e.g., Hitzler et al. [2008], the OWL semantics and syntax definitions of W3C1, or the OWL

1See http://www.w3c.org/TR/owl-semantics/.
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1. Introduction 1.2. Ontological Multi-level Modeling 2

technical report of W3C 2.

However, to access data using the semantic web such data must often be converted to OWL.
Much research has been performed on the topic of information integration and knowledge
combination. The main goal of these researches is to make a connection between users and
heterogeneous information systems that can be applied in intranet and internet environments.
Some approaches tend to create a new ontology and other approaches create a mapping to an
already existing ontology. In particular, there are several possible solutions available to create
mappings from relational database schema to web ontologies, see, e.g., Albarrak and Sibley
[2009], Levshin [2009], Sane and Shirke [2009], Xu et al. [2006] and references therein, or
from XML and XML Schema to OWL, see, e.g., Anicic et al. [2007], Kobeissy et al. [2007],
and references therein. Hence, schema statements in OWL (with the open world assumption
(OWA)) are interpreted in a different way to similar statements in a relational database set-
ting (with the closed world assumption (CWA)). To bridge the gap between OWA and CWA
Motik et al. [2007, 2009] proposes an extension of OWL to extended DL knowledge bases that
mimic the intuition behind integrity constraints in relational databases. In particular, the
modeler is allowed to designate a subset of TBox axioms as integrity constraints. For TBox
(schema) reasoning these axioms are treated as usual axioms, whereas for ABox (data) reason-
ing they are treated as checks and do not derive additional information. Thus, the approach
provides a clear semantic relationship between the roles that integrity constraints play during
TBox and ABox reasoning.

The distinction between classes and instances has gathered great importance whether done
automatically or manually, and underlies many present discussions in different knowledge
representation systems. There are inherent requests to involve the capability to incorporate
a distinction between classes and instances, driven by, e.g., ontologies. Hence, it turns out
that the clear distinction is not always possible, see, e.g., Miller and Hristea [2006]. Mainly,
the distinction is not drawn explicitly since there is only a “is a” relation, where a difference
between classes and instances is made.

1.2 Ontological Multi-level Modeling

In the recent years multi-level modeling has attracted an increased attention in the field of
semantic data modeling since objects are often organized in hierarchies with multiple levels.
Original data sources are often heterogeneous in an inherent manner, while current model-
ing and implementation techniques often discard these heterogeneities. Typical examples are
production hierarchies, dimension hierarchies in data warehouses, and taxonomies in general.
In particular, ontological multi-level modeling or meta-modeling is achieved by the represen-
tation of domain objects at different levels of abstraction, which are part of an abstraction
hierarchy. In contrast to linguistic meta-modeling, which is used to define or extend model-
ing languages, ontological multi-level modeling is used to model complex domains, where the

2See http://www.w3c.org/TR/owl-features.
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distinction between classes and instances is contextual in general.

Hence, a multiple representation normally accompanies an increased complexity and com-
plicates modeling, maintenance and extension. These supplementary effects may result from
the description of objects with non-uniform structure at the same level. Due to the rapidly
growth of information systems in size and the requirement of system integration, a need to
handle levels of similar, but heterogeneous objects arise.

Several modeling techniques have been proposed to overcome these undesirable effects and
unnecessary complexity. Main techniques are Power Types, Potency-Deep Instantiation, Mate-
rialization and Multi-Level Objects (m-objects), where the interested reader is referred to, e.g.,
Neumayr and Schrefl [2008], Neumayr et al. [2009b] and references therein for an overview
and a comparison of the methods. These approaches allow to describe domain concepts with
members at multiple levels of abstraction. In contrast to the rest of the mentioned multi-level
modeling techniques, which focus more or less on a single type of semantic abstraction hier-
archies, especially m-objects (together with Multi-Level Relationships (m-relationships)) intend
to present domain objects at levels of abstraction in more or less very general abstraction
hierarchies, see, e.g., Neumayr et al. [2009a]. The main idea is to encapsulate the levels of
abstraction, which relate to a single domain concept, into a m-object and to represent general
hierarchies by a single concretization hierarchy. Moreover, the approach intends to integrate
aspects of different abstraction hierarchies, including aggregation, classification and general-
ization, in a single concretization hierarchy. This fact should lead to an improvement of
readability and a simplified modeling and maintenance.

If a concept hierarchy is considered, which states if concepts are specialization of other con-
cepts or if they are synonyms, again OWL provides a language that can be applied to describe
classes and relations between them that are inherent in web documents and applications. Rea-
soning can be applied, e.g., to test whether concepts are non-contradictory or to derive hidden
relations. This procedure is highly relevant to guarantee the quality of an ontology. If the on-
tology is deployed, even the consistency of facts or instance relationships can be inferred.
Reasoning means deciding satisfiability and subsumption of concepts with respect to TBoxes
and role hierarchies. In Neumayr and Schrefl [2009] a semantic-preserving mapping of m-
objects and m-relationships to OWL is presented, especially, to transfer the formal conceptual
modeling approach to ontological engineering. Then, previously-mentioned advantages from
ontological engineering can be utilized like e.g. consistency checks, query facilities.

1.3 Main Ideas and Aims of the Diploma Thesis

The diploma thesis aims to provide a conceptual multi-level modeling approach, which can
be combined with ontological engineering. The novelty of the present work is stated by an
appropriate extension of the m-object and m-relationship approach in order to integrate fur-
ther important aspects of general abstraction hierarchies, see, e.g., Neumayr et al. [2010]. In
this context so-called Generalized Multi-Level Objects (gm-objects) and Generalized Multi-Level
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Relationships (gm-relationships) are introduced. The intention is that the proposed model-
ing technique inherits the advantages of m-objects/m-relationships and, simultaneously, in-
corporates additional essential facets of more general abstraction hierarchies. In contrast
to m-objects/m-relationships the presented multi-level modeling approach is characterized
by its multi-dimensional character. The modeling approach is especially devoted to Hetero-
Homogeneous Hierarchies (HH-Hierarchies), which are hierarchies with a single root node,
being

• homogeneous with respect to a minimal common schema, which is shared by any sub-
hierarchy, whose root note is realized by a child node of the hierarchy, and

• heterogeneous with respect to refined schemata of sub-hierarchies.

In addition, analogous to Neumayr and Schrefl [2009] a semantic-preserving mapping of gm-
objects and gm-relationships to the decidable part of OWL is presented, while combining
OWA and CWA. This instrument enhances ontological engineering and, consequently, data
access in the semantic web.

Remark 1. In the present diploma thesis we mainly continue the ideas of Neumayr et al.
[2009a], Neumayr and Schrefl [2009], Neumayr et al. [2010], which are partially revised,
compared to and complemented with own ideas.

1.4 Outline of the Diploma Thesis

The rest of the diploma thesis is organized in chapters and can briefly be sketched as follows.

Chapter 2 In this chapter gm-objects and gm-relationships are introduced, and their rele-
vance for hetero-homogeneous hierarchies is discussed.

Chapter 3 An appropriate semantic-preserving mapping to OWL in form of algorithms for
gm-objects and gm-relationships is presented. Relevant issues regarding, e.g., CWA and OWA
are discussed and (mapping) results are compared to Neumayr and Schrefl [2009].

Chapter 4 Additional related work with respect to meta-modeling support in OWL and
suggestions for further work are revealed, and some conclusions of our results are provided.

The notation and important mathematical preliminaries are introduced when necessary. In
addition, several examples are arranged in the diploma thesis to illustrate the results.



2 Modeling Hetero-Homogeneous
Hierarchies

In this chapter Generalized Multi-Level Objects (gm-objects) and Generalized Multi-Level Rela-
tionships (gm-relationships) are introduced. It is highlighted that by using these objects and
relationships as well as associated concretizations and concretization hierarchies a conceptual
modeling approach is obtained, which is capable to model hetero-homogeneous hierarchies,
see chapter 1.3. Several examples demonstrate the applicability of the proposed technique.

2.1 Generalized Multi-Level Objects

In this section the notions of a gm-object, a consistent (individual) concretization of a gm-
object, and a consistent concretization hierarchy of gm-objects are defined.

2.1.1 Definition of GM-Object

With respect to m-objects the arrangement of abstraction levels is restricted to linear order
from the most abstract to the most concrete one, see, e.g., Neumayr et al. [2009a], whereas
now gm-objects permit to encapsulate and arrange abstraction levels in an almost arbitrary
order. Hence, the levels are still arranged from the most abstract one to the most concrete
ones. In addition, there can be references to abstraction levels of other gm-objects, which are
called level references. A gm-object describes itself and the common properties of the objects
at each level of the concretization hierarchy beneath itself. A gm-object specifies concrete
values for the properties of its top-level. This top-level has a special role in that it describes
the gm-object itself.

Let us start with a formal definition of a gm-object, allowing a partial (non-linear) order of
levels.

Definition 2 (GM-Object with Level References). A gm-object

o = (Lo , LRo,Ao, po, p ro, lo, do, vo)

consists of a set of levels Lo, a set of level references LRo and a set of attributes Ao, which are
taken from an universe of levels L, level references LR and attributes A, respectively. The
order of levels Lo is given by the partial function parent1

po : Lo→P (Lo); l 7→Ul ⊂ Lo ,

1P (Lo) denotes the power setP (Lo) := {U : U ⊂ Lo} of Lo . Another typical notation is 2L0 .

5



2. Modeling HH-Hierarchies 2.1.1. Definition of GM-Object 6

which associates with each level its parent levels, where for all l ∈ Lo the relation l 6∈ po(l ) =
Ul holds. Further, the partial function parent reference

p ro : Lo→P (LRo); l 7→ Ūl ⊂ LRo ,

associates with each level its parent level references. A gm-object has a single top level l̂o ∈ Lo

with po( l̂o) = {} and p ro( l̂o) = {}. The set Po ⊆ Lo × Lo, where (l , l̄ ) ∈ Po iff l̄ ∈ po(l ) such
that Po =
⋃

l∈Lo\{ l̂o}
({l}×{po(l )}), is denoted parent relation. Each attribute is associated with

one level, which is defined by the function level

lo : Ao→ Lo ;a 7→ l ∈ Lo ,

and has domain, which is defined by the function domain

do : Ao→ D;a 7→ d ∈ D ,

where D is an universe of data types. Optionally, an attribute has a value from its domain,
which is defined by the partial function value

vo : Ao→V ;a 7→ v ∈V ,

where V is an universe of data values. The attributes Âo of the top-level l̂o are specified entirely
by values of their domain.

In Neumayr et al. [2010] a different definition2 of a similar object is provided, where in com-
parison to Definition 2 level references are neglected. Therefore, we also state an alternative
definition of a gm-object here.

Definition 3 (GM-Object without Level References). A gm-object

o = (Lo,Ao, po, lo, do, vo)

consists of a set of levels Lo and a set of attributes Ao, which are taken from an universe of
levels L and attributes A. The order of levels Lo is given by the partial function parent

po : Lo→P (Lo); l 7→Ul ⊂ Lo ,

which associates with each level its parent levels, where for all l ∈ Lo the relation l 6∈ po(l ) =

Ul holds. A gm-object has a single top level l̂o ∈ Lo with po( l̂o) = {}. The set Po ⊆ Lo × Lo,

where (l , l̄ ) ∈ Po iff l̄ ∈ po(l ) such that Po =
⋃

l∈Lo\{ l̂o}
({l} × {po(l )}), is denoted parent

relation. Each attribute is associated with one level, which is defined by the function level

lo : Ao→ Lo ;a 7→ l ∈ Lo ,

2In Neumayr et al. [2010] the object is denoted m-object.



2. Modeling HH-Hierarchies 2.1.1. Definition of GM-Object 7

and has domain, which is defined by the function domain

do : Ao→ D;a 7→ d ∈ D ,

where D is an universe of data types. Optionally, an attribute has a value from its domain,
which is defined by the partial function value

vo : Ao→V ;a 7→ v ∈V ,

where V is an universe of data values. The attributes Âo of the top-level l̂o are specified entirely
by values of their domain.

The parent relation Po represents an alternative description for the order of abstraction levels.

Its transitive closure is P+
o

and its transitive and reflexive closure is P ∗
o
. Moreover, a level l̄

is called a child of a level l iff ( l̄ , l ) ∈ Po , and l̄ is a descendant of, or below, l iff ( l̄ , l ) ∈ P+
o

and l̄ is a descendant of or the same as l iff ( l̄ , l ) ∈ P ∗
o
. Moreover, level references are written

in the form o : l , where o states the gm-object and l the appealed level of abstraction of the
gm-object o.

It is worth noting that concretize-relationships3 between levels describe direct relations to
descendant or ancestor levels and do not consider implicit relations between levels. The set of
second top-levels of a gm-object o is given by

{l ∈ Lo : po(l ) = l̂o}

and the set, which has the level l̄o ∈ Lo and all of its direct and indirect descendants as its
elements, is denoted by

Lo|l̄o
:= { l̄o}∪ {l ∈ Lo : ∃k ∈N po(...(po(l ))) = (po)

k(l ) = l̄o} ,

where (po)
k(·) denotes the k-times application of po. In addition, the set of attributes related

to Lo| l̄o
reads

A|Lo | l̄o
= {a ∈Ao : lo(a) ∈ Lo|l̄o

} .

Let O denote a set of gm-objects, then a gm-object o ∈ O is said to be at level l if l is its

top-level l̂o. In particular, gm-objects, levels, and attributes have names, which are defined by
the function name

n : O ∪ L∪A→N ,

where N is an universe of names.

In order to exemplify gm-objects we take a look at different ranges of applications.

3In this work we restrict to 1 : 1 concretize-relationships.
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Example 4. Let us consider the gm-object Product as depicted in figure 2.1, which consists of
four levels

LProduct = {Catalog, Category, Model, PhysicalEntity}

with one attribute each. The levels are arranged in linear order, where the parent level of
Category is the level Catalog,

pProduct (Category) =Catalog ,

the parent level of Model is Category,

pProduct

�

Model
�

=Category ,

and the parent level of PhysicalEntity is Model,

pProduct

�

PhysicalEntity
�

=Model .

The top-level Catalog,

l̂Product =Catalog ,

defines the attribute description,

lProduct(description) =Catalog ,

with domain String,
dProduct(description) = String ,

and assigns a specific value,

vProduct(description) = „Our products“ .

In [Neumayr et al., 2009a, p. 2] the same example is used for m-objects, which shows that
gm-objects are a generalization of m-objects.

Product

<Catalog>

- description : String = 'Our products'

<Model>

- listPrice : Float

<Category>

- taxRate : Integer

<PhysicalEntity>

- serialNr : Integer

Figure 2.1: Gm-object Product with linear order of levels
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In comparison to m-objects gm-objects are even capable to treat more general hierarchies of
abstraction levels.

Example 5. Let us consider the gm-object Location as depicted in figure 2.2, which consists
of four levels

LLocation = {T, country, region, city} .

The levels are not arranged in linear order. The parent-child dependencies are given by

pLocation (country) = T,

pLocation (region) = T,

pLocation (city) = {country, region} .

<country> <region>

Location

<T>

<city>

-inhabitants : int

Figure 2.2: Gm-object Location with nonlinear order of levels

With regard to Definition 2 level references can arise, i.e., where LRo 6= {} for a gm-object o.
This may happen if we concretize gm-objects with a general (non-linear) order of abstraction
levels.

Example 6. Let us consider the gm-objects Austria and Alps as depicted in figure 2.3, which
consist of the levels

LAustria = {country, city}

and
LAlps = {region, city} .

The gm-object Austria contains a level reference,

p rAustria(city) = {Alps:region} .

Alps

<region>

<city>

<country> <Alps:region>

Austria

<city>

Figure 2.3: Gm-objects Austria and Alps with level reference



2. Modeling HH-Hierarchies 2.1.2. Concretizations 10

2.1.2 Concretizations

A gm-object can concretize other gm-objects, which are referred as its parents. A concretiza-
tion of gm-objects, which is a gm-object itself, can be regarded as an instance of its parent
gm-objects. Then, the top-level of a gm-object is an instance of a specific second top-levels
of all parent gm-objects. Thus, a child gm-object selects its single top-level from the com-
mon second top levels of its parent gm-objects and in the case of multiple concretization the
top-level of the child gm-object must be a common second-top level of its parent gm-objects.

The concretize-relationship especially compromise e.g. classification, generalization and ag-
gregation. However, a concretize-relationship between gm-objects does not reflect that one
m-object is at the same time an instance of, component of, and subclass of another gm-object
as a whole. The gm-object inherits the second top-levels, all direct and indirect descendant
levels together with the relative order of these common levels and, eventually, level refer-
ences. It can even specify values for its attributes. Moreover, the concretize-relationships to
the parents must compromise the neglected concretize-relationships of the parents. The level
descriptions of a gm-object correspond to subclasses of the corresponding levels of its parents.
The gm-object can define new levels or add/concretize attributes as well as concretization-
relationships to other levels. In any case a gm-object must not change the relative order of
levels, which are inherited from its parents.

In the following we define what we mean with a consistent (individual) concretization, hence,
we do not explicitly describe the inheritance mechanism for simplicity. First, gm-objects with
level references are considered, see Definition 2.

Definition 7 (Consistent Concretization of GM-Objects with Level References). A gm-object
ō is a consistent concretization of another gm-object o iff

1. (Second Top-Level Instantiation) The top-level l̂ō of ō is a second top-level l̄o of o,

( l̂ō , l̂o) ∈ Po .

2. (Level Containment) The second top level l̄o and all of its (direct and indirect) descen-
dant levels are also levels of ō,

L̄o = Lo|l̄o
⊆ Lō .

3. (Level References Containment) All level references related to L̄o\{ l̄o} are levels or level
references in ō ,

p ro(L̄o \ { l̄o})⊆ (Lō ∪ LRō) ,

and neglected concretization relationships related to L̄o\{ l̄o} are added as level refer-
ences,

(po(L̄o\{ l̄o})\L̄o)⊆ (Lō ∪ LRō) .
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4. (Attribute Containment) All attributes related to L̄o also exist in ō, i.e.,

A|L̄o
⊆Aō .

5. (Level Order Compatibility) The relative order of common levels of o and ō is the same,
i.e.,

l , l̄ ∈
�

Lo ∩ Lō

�

: (l , l̄ ) ∈ P+
ō
⇒ (l , l̄ ) ∈ P+

o
.

6. (Local Level Order) Levels newly introduced in ō have parents only within ō, i.e.,

∀(l , l̄ ) ∈ Pō : l ∈
�

Lō \ Lo

�

⇒ l̄ ∈ Lō .

7. Common attributes are associated with the same level, have the same domain, and the
same value, if defined, i.e., for a ∈

�

Ao ∩Aō

�

it follows

(a) (Stability of Attribute Level) lo(a) = lō(a),

(b) (Stability of Attribute Domains) do(a) = dō(a),

(c) (Compatibility of Attribute Values) If vo(a) is defined, it follows vo(a) = vō(a).

If gm-objects without level references are applied according to Definition 3, we have a different
definition of a consistent (individual) concretization.

Definition 8 (Consistent Concretization of GM-Objects without Level References). A gm-
object ō is a consistent concretization of another gm-object o iff

1. (Second Top-Level Instantiation) The top-level l̂ō of ō is a second top-level l̄o of o,

( l̂ō , l̂o) ∈ Po .

2. (Level Containment) The second top level l̄o and all of its (direct and indirect) descen-
dant levels are also levels of ō,

L̄o = Lo|l̄o
⊆ Lō .

3. (Attribute Containment) All attributes related to L̄o also exist in ō, i.e.,

A|L̄o
⊆Aō .

4. (Level Order Compatibility) The relative order of common levels of o and ō is the same,
i.e.,

l , l̄ ∈
�

Lo ∩ Lō

�

: (l , l̄ ) ∈ P+
ō
⇒ (l , l̄ ) ∈ P+

o
.
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5. (Local Level Order) Levels newly introduced in ō have parents only within ō, i.e.,

∀(l , l̄ ) ∈ Pō : l ∈
�

Lō \ Lo

�

⇒ l̄ ∈ Lō .

6. Common attributes are associated with the same level, have the same domain, and the
same value, if defined, i.e., for a ∈

�

Ao ∩Aō

�

it follows

(a) (Stability of Attribute Levels) lo(a) = lō(a),

(b) (Stability of Attribute Domains) do(a) = dō(a),

(c) (Compatibility of Attribute Values) If vo(a) is defined, it follows vo(a) = vō(a).

Example 9. Let us consider the gm-object Product from Example 4, which is concretized by
the gm-object Car. The gm-object Car instantiates Category, i.e., it has Category as its top-
level, and specifies the value for the attribute taxRate, as depicted in figure 2.4. Moreover, an
extra level Brand is introduced between the levels Category and Model. According to Defini-
tion 7 and Definition 8 the gm-object Car is a consistent (individual) concretization of the
gm-object Product because all required conditions are fulfilled.

Product

<Catalog>

- description : String = 'Our products'

<Model>

- listPrice : Float

<Category>

- taxRate : Integer

<PhysicalEntity>

- serialNr : Integer

Car

<Category>

- taxRate : Integer = 20

<Model>

- listPrice : Float

<Brand>

- marketLaunch : Date

<PhysicalEntity>

- serialNr : Integer

Figure 2.4: Consistent concretization of gm-object Product by gm-object Car
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Example 10. Let us consider the gm-object Location from Example 5, which is concretized
by the gm-objects Austria and Alps with the corresponding top-levels country and region and
level references Location:country and Location:region, respectively, as depicted in figure 2.5.
Both gm-objects are consistent (individual) concretizations of the gm-object Location in the
sense of Definition 7.

<country> <region>

Location

<T>

<city>

-inhabitants : int

<Location:country> <region>

Alps

<city>

<country> <Location:region>

Austria

<city>

Figure 2.5: Consistent concretizations of gm-object Location with level references

Example 11. Let us again consider the gm-object Location from Example 5, which is con-
cretized by the gm-objects Austria and Alps with the corresponding top-levels country and
region, as depicted in figure 2.6. Both gm-objects are consistent (individual) concretizations of
the gm-object Location with respect to Definition 8, but not with respect to Definition 7.

<country> <region>

Location

<T>

<city>

-inhabitants : int

Alps

<region>

<city>

Austria

<country>

<city>

Figure 2.6: Consistent concretizations of gm-object Location
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2.1.3 Concretization Hierarchies

Gm-objects can be organized in a hierarchy. The concretization path between gm-objects
of different levels expresses a hierarchy at the instance level. At the schema level the level
hierarchy is given by the order of levels of a gm-object. In order to avoid conflicts, the names
of gm-objects, attributes and levels are supposed to be unique within the considered context.

Gm-objects organized in a concretization hierarchy inherit properties and functions from
their parent gm-objects and, thus, may only be partially defined, i.e., a child gm-object inher-
its from its parent gm-objects several properties, i.e., certain levels, attributes and function
definitions. The inherited properties are at the child’s disposal in all function definitions.
These respective functions, if only partially specified at the child, are extended for undefined
arguments using the corresponding functions of its parents.

Apparently, the definition of a consistent (individual) concretization of gm-objects leads us
directly to the notion of a concretization hierarchy.

Definition 12 (Concretization Hierarchy of GM-Objects). A concretization hierarchy of a
set of gm-objects O is an acyclic relation HO ⊆ O ×O . If (o, ō) ∈ HO , then o is a direct
concretization of ō. If (o, ō) ∈H +

O
and (o, ō) 6∈ HO , then o is an indirect concretization of ō.

The class of descendant gm-objects of a gm-object o at level l is denoted o 〈l 〉. In particular,
in this work we are interested in consistent concretization hierarchies. In the case of level
hierarchies, which are not in total order, but in partial order, we especially demand that each
attribute and level is induced at exactly one gm-object in order to avoid conflicts due to mul-
tiple inheritance.

Definition 13 (Consistent Concretization Hierarchy of GM-Objects). A concretization hi-
erarchyHO of a set of gm-object O is consistent, iff

1. Each o ∈O is a gm-object according to Definition 2 resp. Definition 3.

2. For each pair of gm-objects (o, ō) ∈HO , o is a consistent concretization of ō according
to Definition 7 resp. Definition 8.

3. Each attribute and level is introduced at only one gm-object:

(a) (Unique Induction Rule for Attribute) If a ∈ (Aō∩Ao) and there exists a gm-object
õ ∈O such that (o, õ) ∈H ∗

O
, (õ, ō) ∈H ∗

O
then a ∈Aõ .

(b) (Unique Induction Rule for Levels) If l ∈ (Lō ∩ Lo) and there exists a gm-object
õ ∈O such that (o, õ) ∈H ∗

O
, (õ, ō) ∈H ∗

O
then l ∈ Lõ .
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4. If a gm-object ō with top level l is a direct or indirect concretization of a gm-object o,

where (l , l̄ ) ∈ Po, then ō must concretize a gm-object ô with top-level l̄ .

Remark 14. Apparently, hetero-homogeneous hierarchies, as described in section 1.3, can
be modeled by means of such consistent concretization hierarchies. Here, we confine to
hierarchies with a single root node, which may not be the case in the general setting.

Because of the unique induction rule for levels and the level order compatibility, levels in a

concretization hierarchy are partially ordered implicitly. A level l̄ ∈ L is called a descendant

of l ∈ L, written as l̄ ≺ l , if there is a gm-object o ∈ O in which l̄ is a descendant of l . In

addition, we write l̄ � l if l̄ is either descendant of or equal to l .

Remark 15. With regard to m-objects, introduced in Neumayr et al. [2009a], and gm-objects
parent relations Po and concretization hierarchies HO imply certain types of graphs. For
m-objects

• the concretization hierarchy HO is a directed acyclic graph or, especially, tree with
partial order (and4 one root node), and

• P ∗
o

is a directed acyclic graph with total order.

Whereas for gm-objects

• the concretization hierarchyHO is a directed acyclic graph with partial order (and5 one
root node), and

• P ∗
o

is a directed acyclic graph with partial order.

Example 16. Let us consider a consistent concretization hierarchy with level references as de-
picted in figure 2.7, which is represented by the set of the gm-objects O = {Location, Austria,
Alps, Salzburg}. It can easily be checked that all conditions of Definition 13 are satisfied.

4This fact must be ensured by an additional assumption.
5For gm-objects also a further assumption must be placed to have only a single root node.
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<country> <region>

Location

<T>

<city>

-inhabitants : int

<Location:country> <region>

Alps

<city>

<country> <Location:region>

Austria

<city>

Salzburg

<city>

- inhabitants = 148.470

Figure 2.7: Consistent gm-object concretization hierarchy with level references

Example 17. Let us consider a consistent concretization hierarchy without level references as
depicted in figure 2.8, which is represented by the set of gm-objects O = {Location, Austria,
Alps, Salzburg}. Again, it can easily be verified that all conditions of Definition 13 are satis-
fied.

<country> <region>

Location

<T>

<city>

-inhabitants : int

Alps

<region>

<city>

Austria

<country>

<city>

Salzburg

<city>

- inhabitants = 148.470

Figure 2.8: Consistent gm-object concretization hierarchy without level references
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2.2 Generalized Multi-Level Relationships

In this section the notions of a gm-relationship, a consistent (individual) concretization of a
gm-relationship, and a consistent concretization hierarchy of gm-relationships are defined.

2.2.1 Definition of GM-Relationship

Gm-relationships are analogous to gm-objects since they describe relationships between gm-
objects at multiple levels of abstraction. In addition, similar to gm-objects they can even be ar-
ranged at different levels of abstraction in concretization hierarchies. Thus, a gm-relationship
represents different abstraction levels of a relationship, which connects gm-objects at the re-
spective levels, and it implies extensional constraints for its concretizations at multiple levels.
Gm-relationships can cope with hetero-homogeneous hierarchies and, moreover, they can be
applied for querying and navigation.

The proposed approach covers n-ary m-relationships, which can optionally be described by
attributes. It is worth mentioning that in Neumayr et al. [2010]measures are associated with
m-relationships in the context of data warehouses, hence, which have a different meaning
compared to attributes.

Definition 18 (GM-Relationship). A gm-relationship

r = (Or ,Cr ,Ar , cr , dr , vr , nr )

relates a sequence of gm-objects Or =
�

o1, . . . , om

�

, which also defines its coordinate (de-
noted by coord(r )), and has a set of connection-levels Cr ⊂ LO = Lo1

× · · · × Lom
. Its top-

connection-level l̂r is implicitly given by the top-levels of the referenced gm-objects, i.e.,

l̂r :=
�

l̂o1
, . . . , l̂om

�

∈ LO . Each gm-object oi , i = 1, . . . , n, is associated with a label, which

is defined by the total function name

nr : [1, m]→ LB ,

having the one-to-one property and where LB is an universe of labels. Each attribute a ∈ Ar

is described by a connection-level, which is defined by the total function connection

cr : Ar →Cr ;a 7→ l ∈Cr ,

its domain, which is defined by the function domain

dr : Ar →D;a 7→ d ∈ D ,

where D is an universe of data types and, optionally, by a value from its domain, which is
defined by the partial function value

vr : Ar →V ;a 7→ v ∈V ,

where V is an universe of data values. The attributes of the top-connection-level l̂r are speci-
fied entirely by values of their domain.
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Remark 19. The label nr (i) of a gm-object oi is typically the name of the root node in the
associated concretization hierarchy. If two or more gm-objects share the same root node,
i.e., they belong to the same concretization hierarchy, different names have to be introduced.
Otherwise, the function nr will not be injective. This labeling approach (for gm-relationships)
is required since a gm-object can be related in several different manners to other gm-objects
within the same gm-relationship, see, e.g., Example 23, where a Person might be a Seller and a
Buyer simultaneously. This technique is equivalent to approaches for relational databases, see,
e.g., Codd [1970].

Remark 20. In contrast to Neumayr et al. [2010] we do not suppose that each elements oi of
a coordinate O =

�

o1, . . . , om

�

belongs to a separate concretization hierarchy.

Example 21. Let us consider the gm-relationships producedBy and designedBy as depicted in
figure 2.9. They involve the gm-objects Product and Company resp. Product and Person,

OproducedBy =
�

Product,Company
�

,

OdesignedBy =
�

Product,Person
�

,

with labels

nproducedBy (1) = ”Product” ,

nproducedBy (2) = ”Company” ,

ndesignedBy (1) = ”Product” ,

ndesignedBy (2) = ”Person” ,

and (multiple) connection-levels

CproducedBy = {
�

category, industrial sector
�

,
�

model, enterprise
�

,
�

physical entity, factory
�

} ,

CdesignedBy =
��

model, individual
�	

.
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Company

<T>

<industrial sector>

<enterprise>

<factory>

Product

<T>

<model>

<category>

<physical entity>

producedBy

„Product“ „Company“

<category, industrial sector>

<model, enterprise>

<physical entity, factory>

Person

<T>

<individual>

designedBy

„Product“

„Person“

<model, individual>

Figure 2.9: Gm-relationships producedBy and designedBy

Example 22. Let us consider a gm-relationship sales as depicted in figure 2.10. It links the
gm-objects Product, Time and Location,

Osales =
�

Product,Time,Location
�

,

with labels

nsales (1) = ”Product” ,

nsales (2) = ”Time” ,

nsales (3) = ”Location” ,

has connection-level <model, month, city>

Csales =
��

model,month, city
�	

,

and defines the attribute discount,

csales

�

discount
�

=
�

model,month, city
�

,

dsales

�

discount
�

= Float .
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<country> <region>

Location

<T>

<city>

-inhabitants : int

Time

<T>

<month>

<year>

Product

<T>

<model>

-costs : Float

<category>

- catMgr : String

sales

„Product“ „Time“ „Location“

<model, month, city>

- discount : Float

Figure 2.10: Gm-relationship sales

Example 23. Let us consider a gm-relationship order as depicted in figure 2.11. It links the
gm-objects Product, Time and Location,

Oorder =
�

Product,Person,Person
�

,

with labels

norder (1) = ”Product” ,

norder (2) = ”Seller” ,

norder (3) = ”Buyer” ,

has the connection-level <model, individual, individual>,

Corder =
��

model, individual, individual
�	

and defines the attribute minPrice,

corder (minPrice) =
�

model, individual, individual
�

,

dorder (minPrice) = Float .
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Product

<T>

<model>

<category>

<physical entity>

order

„Product“ „Buyer“

<model, individual, individual>

- minPrice : Float

Person

<T>

<individual>

„Seller“

Figure 2.11: Gm-relationship order

2.2.2 Concretizations

Gm-relationships can be concretized like gm-objects. If at least one linked gm-object is sub-
stituted by a (direct or indirect) descendant gm-object, a gm-relationship is concretized in
its coordinate. The concretize-relationship between two m-relationships states instantiation
and/or specialization. The descendant gm-relationship must provide values for the attributes
at its top-connection-level and may add additional connection-levels and attributes.

Hence, first of all we require a suitable (partial) ordering for connection-levels and coor-
dinates of gm-relationships. Let us suppose a set of gm-objects O and connection-levels

lr =
�

l1, . . . , lm

�

, l̄r =
�

l̄1, . . . , l̄m

�

∈ LO . l̄r is a descendant of lr , written l̄r � lr , iff l̄i � li

for i = 1, . . . , m. Let us suppose two coordinates (of gm-relationships) O =
�

o1, . . . , om

�

and

Ō =
�

ō1, . . . , ōm

�

, whose elements belong to concretization hierarchiesHi . The coordinate Ō

is a descendant of or equal to coordinate O , written Ō �O , iff
�

ōi , oi

�

∈H ∗
i

for i = 1, . . . , m.

The coordinate Ō is a proper descendant of O , written as Ō ≺O , iff oi is a descendant of or
equal to oi for i = 1, . . . , m and at least one gm-object ōi concretizes oi .

The following definition for a consistent (individual) concretization of a gm-relationship is
applied in the diploma thesis.

Definition 24 (Consistent Concretization of GM-Relationships). A gm-relationship r̄ =
(O r̄ ,C r̄ ,Ar̄ , c r̄ , d r̄ , v r̄ ) is a consistent concretization of another gm-relationship r = (Or ,Cr ,
Ar , cr , dr , vr ) iff

1. O r̄ ≺Or .

2. (Connection-Level Containment) Every connection-level with base-level that is below
or equal the top-level of r̄ is also a connection-level of r̄ , i.e.,

C̄r =
n

lr ∈Cr : lr � l̂ r̄

o

⊆C r̄ ,
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and every other connection-level of r is not a connection-level of r̄ , i.e.,

n

lr ∈Cr : lr � l̂ r̄

o

∩C r̄ =Ø.

3. (Label Stability) Labels associated with gm-objects must be the same, i.e.,

nr (i) = n r̄ (i) , i = 1, . . . , m .

4. (Attribute Containment) Every attribute a of r related to a connection-level in C̄r is
also a attribute of r̄ , i.e.,

¦

a ∈Ar : cr (a) ∈ C̄r

©

⊆Ar̄ ,

and every other attribute of r is not an attribute of r̄ , i.e.,

¦

a ∈Ar : cr (a) 6∈ C̄r

©

∩Ar̄ =Ø.

5. Common attributes are associated with the same connection-level, have the same do-
main, and the same value, if defined, i.e., for a ∈

�

Ar ∩Ar̄

�

it follows

(a) (Stability of Attribute Connection-Level) cr (a) = c r̄ (a),

(b) (Stability of Attribute Domains) dr (a) = d r̄ (a),

(c) (Compatibility of Attribute Values) If vr (a) is defined, it follows vr (a) = v r̄ (a).

Example 25. Let us consider a gm-relationship sales-HarryPotter4-Feb.09-Salzburg between the
gm-objects HarryPotter4, Feb.09 and Salzburg as depicted in figure 2.12. It concretizes the gm-
relationship sales-Product-Time-Location between the gm-objects Product, Time and Location
and its top-connection-level <model, month, city>, i.e., it defines a value for the attribute
discount.
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<country> <region>

Location

<T>

<city>

-inhabitants : int

Time

<T>

<month>

<year>

Product

<T>

<model>

-costs : Float

<category>

- catMgr : String

����������	
��������

ation

„Product“ „Time“ „Location“

<model, month, city>

- discount : Float

�
oo
�

<model>

<category>

- catMgr � "MrBlack"�arr�Potter�
<model>

- costs = 4

����
<month>

<year> �
e
����

<month>

�
l
�
s

<region>

<city>

 
ustria

<country>

<city> !al"#ur$
<city>

������%���&������'�(�)*+,�-��.)	�/„Product“ „Time“

„Location“

<model, month, city>

- discount = 5

Figure 2.12: Concretization of a gm-relationship

Example 26. Let us consider a gm-relationship sales-Car-2009-Switzerland between the gm-
objects Car, 2009 and Switzerland as depicted in figure 2.13. It concretizes the gm-relationship
sales-Product-Time-Location between the gm-objects Product, Time and Location by introduc-
ing new connection-levels and attributes. I.e., the top-connection-level becomes <category,
year, country> with the attribute minPrice and defined value, and the connection-level<brand,
month, city> is introduced with attribute minQty and defined domain as well as defined value.



2. Modeling HH-Hierarchies 2.2.2. Concretizations 24

<country> <region>

Location

<T>

<city>

-inhabitants : int

Time

<T>

<month>

<year>

Product

<T>

<model>

-costs : Float

<category>

- catMgr : String

sales-Product-Time-Location

„Product“ „Time“ „Location“

<category, year, country>

- minPrice : Float

<model, month, city>

- discount : Float

Car

<model>

- ma0S1eed : int

<category>

- catMgr 2 3Ms
4

hite3
<brand>

2009

<month>

<year>

Switzerland

<country>

<
5

anton>

<city>

<store>

sales-Car-2009-Switzerland

„Product“

„Time“

„Location“

<category, year, country>

- minPrice = 10.000

<brand, month, city>

- minQty : int = 2

<model, month, city>

- discount : Float

Figure 2.13: Concretization of a gm-relationship with new connection-level and attributes

If connection-levels are allowed to be moved to a more specific connection-level, we obtain
the following extended definition of a consistent concretization of gm-relationships.

Definition 27 (Extended Consistent Concretization of GM-Relationships). A gm-relationship
r̄ = (O r̄ ,C r̄ ,Ar̄ , c r̄ , d r̄ , v r̄ ) is a consistent concretization of another gm-relationship r = (Or ,
Cr ,Ar , cr , dr , vr ) iff

1. O r̄ ≺Or .
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2. (Connection-Level Containment) Every connection-level with base-level that is below
or equal the top-level of r̄ is also a connection-level of r̄ , i.e.,

C̄r =
n

lr ∈Cr : lr � l̂ r̄

o

⊆C r̄ ,

and every other connection-level of r is not a connection-level of r̄ , i.e.,

n

lr ∈Cr : lr � l̂ r̄

o

∩C r̄ =Ø.

3. (Attribute Containment) Every attribute a of r related to a connection-level in C̄r is
also a attribute of r̄ , i.e.,

¦

a ∈Ar : cr (a) ∈ C̄r

©

⊆Ar̄ ,

and every other attribute of r is not an attribute of r̄ , i.e.,

¦

a ∈Ar : cr (a) 6∈ C̄r

©

∩Ar̄ =Ø.

4. (Assured Granularity) For each connection-level l shared by r and r̄ the base-level of l
at r̄ is the same or below the base-level of l at r , i.e.

∀l ∈
�

Cr ∩C r̄

�

: c r̄ (l )� cr (l ) .

5. Common attributes are associated with the same connection-level, have the same do-
main, and the same value, if defined, i.e., for a ∈

�

Ar ∩Ar̄

�

it follows

(a) (Stability of Attribute Connection-Levels) cr (a) = c r̄ (a),

(b) (Stability of Attribute Domains) dr (a) = d r̄ (a),

(c) (Compatibility of Attribute Values) If vr (a) is defined, it follows vr (a) = v r̄ (a).

2.2.3 Concretization Hierarchies

Analogous to gm-objects gm-relationships can be organized in a hierarchy and the definition
of a consistent (individual) concretization of gm-relationships directly induces to the notion
of a concretization hierarchy.

Definition 28 (Concretization Hierarchy of GM-Relationships). A concretization hierarchy
of a set of gm-relationships R is an acyclic relation HR ⊆ R× R. If (r, r̄ ) ∈ HR, then r is a
direct concretization of r̄ . If (r, r̄ ) ∈H +

R
and (r, r̄ ) 6∈ HR, then r is an indirect concretization

of r̄ .
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In order to avoid conflicts due to multiple inheritance we confine to consistent concretization
hierarchies.

Definition 29 (Consistent Concretization Hierarchy of GM-Relationships). A concretiza-
tion hierarchyHR of a set of gm-object R is consistent, iff

1. Each r ∈ R is a gm-relationship according to Definition 18.

2. For each pair of gm-objects (r, r̄ ) ∈H , r is a consistent concretization of r̄ according
to Definition 24 resp. Definition 27.

3. Each attribute and level is introduced at only one gm-object:

(a) (Unique Induction Rule for Attributes) If a ∈ (Ar̄ ∩ Ar ) and there exists a gm-
relationship r̃ ∈ R such that (r, r̃ ) ∈H ∗

R
, ( r̃ , r̄ ) ∈H ∗

R
then a ∈Ar̃ .

(b) (Unique Induction Rule for Connection-Levels) If l ∈ (C r̄ ∩Cr ) and there exists a
gm-relationship r̃ ∈ R such that (r, r̃ ) ∈H ∗

R
, ( r̃ , r̄ ) ∈H ∗

R
then l ∈C r̃ .

Remark 30. Analogue to gm-objects the concretization hierarchyHR of gm-relationships is a
directed acyclic graph with partial order (and6 one root node).

Example 31. Let us consider a concretization hierarchy as depicted in figure 2.14, which is
represented by the set of gm-relationships

R = {order-Producer-Seller-Buyer,

order-Car-MrBlack-Person,

order-Porsche911-MrBlack-MsWhite} ,

where the gm-relationship order-Car-MrBlack-Person concretizes the gm-relationship order-
Producer-Seller-Buyer and the gm-relationship order-Porsche911-MrBlack-MsWhite concretizes
the gm-relationship order-Car-MrBlack-Person. The hierarchy is a consistent concretization
hierarchy since all criteria of Definition 29 are fulfilled.

6This circumstance must be guaranteed by an additional assumption.
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Product

<T>

<model>

<category>

order-Product-Seller-Buyer

„Product“ „Buyer“

<category, individual, T>

- minPrice : Float

Person

<T>

<individual>

„Seller“

MrBlack

<individual>

MsWhite

<individual>

Car

<model>

<category>

Porsche911

<model>

order-Car-MrBlack-Person

order-Porsche911-MrBlack-MsWhite

„Product“

„Seller“
„Buyer“

„Product“ „Seller“

<category, individual, T>

- minPrice = 10.000

<model, individual, individual>

- discount : int

„Buyer“

<model, individual,individual>

- discount = 5

Figure 2.14: Consistent gm-relationship concretization hierarchy



3 OWL Mapping

In chapter 2 a multi-level modeling technique for hetero-homogeneous hierarchies based upon
generalized multi-level objects (gm-objects) as well as generalized multi-level relationships
(gm-relationships) was introduced. Supplementarily, the present chapter aims to provide a
possibility to transfer the concepts and ideas from conceptual modeling to ontological engi-
neering, where in particular we refer to OWL. In this context a semantic-preserving mapping
from gm-objects and gm-relationships to the decidable fragment of OWL, which is augmented
with suitable integrity constraints to take important aspects into account. Thus, we confine
here to a certain OWL 2 profile, i.e., a sub-language (syntactic subset) of OWL 2, namely
OWL 2 DL. The OWL mapping is restricted and motivated by the following main arguments
regarding the conceptual modeling and the ontology engineering:

• The mapping should preserve the semantics of the conceptual modeling approach using
gm-objects and gm-relationships.

• The mapping output should be in a form such that OWL reasoners are able to

– execute queries at different levels of abstraction and

– to decidably check for consistency or inconsistency for multi-level conceptual
modeling, i.e., with respect to hetero-homogeneous hierarchies.

• The mapping approach should lead to a pattern for ontological meta-modeling within
the decidable fragment of OWL 2. I.e., the mapping should extend the meta-modeling
features of OWL 2 (“punning”, see section 4.1) to objects that represent classes at multi-
ple levels of abstraction, while remaining within the decidable and first-order fragment
of OWL.

The final result of the mapping serves as the basis for ontology engineering and can optionally
be combined with additional OWL axioms and ontologies. In Neumayr and Schrefl [2009]
it was sketched how to transfer m-objects and m-relationships to OWL. Herein, this line of
work is continued and extended to case of gm-objects and gm-objects, which were introduced
in chapter 2. In addition, for certain examples the final mapping-output is provided.

Remark 32. In chapter 2 different definitions of gm-objects/gm-relationships and their con-
sistent (individual) concretizations were provided, respectively. For the OWL mapping we
confine to Definition 3, Definition 8 and Definition 13 for gm-objects, their consistent (in-
dividual) concretization and consistent concretization hierarchies, as well as Definition 18,

28
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Definition 24 and Definition 29 for gm-relationships, their consistent (individual) concretiza-
tion and consistent hierarchies.

For brevity and readability Description Logic (DL) syntax1 is applied and entities (individuals,
classes and properties) are not introduced explicitly because they should be clear from the
context. It is worth noting that the conceptual modeling approach based on gm-objects and
gm-relationships uses the closed world assumption (CWA). Since in OWL this is not the case,
i.e., we have the open world assumption (OWA), the mapping has to ensure that there are
no unwanted drawbacks in form of wrong classifications. As already mentioned in section
1.1, an existing approach from Motik et al. [2007, 2009] is applied, which allows to combine
open and closed world reasoning. Thereby, TBox axioms are added, which are interpreted as
integrity constraints. For TBox (schema) reasoning these axioms are treated as usual axioms,
whereas for ABox (data) reasoning they are treated as checks and do not derive additional
information.

Remark 33. The OWL mapping procedure is provided in form of algorithms for both gm-
objects and gm-relationships. Thereby, [·] denotes that a variable is substituted by its actual
value. Moreover, “assert:” adds an OWL axiom to the mapping output. “IC:” denotes an
OWL axiom which is interpreted as an integrity constraint.

3.1 Mapping Example

In order to illustrate the mapping procedure and its result we apply a running example, which
is shown in the figures 3.1 - 3.4. It is represented by three (hetero-homogeneous) gm-object
concretization hierarchies Product (see figure 3.1), Time (see figure 3.2) and Location (see figure
3.3) and one (hetero-homogeneous) gm-relationship concretization hierarchy sales (see figure
3.4), respectively. The final entire mapping result is provided in section 3.4.

Remark 34. With respect to the gm-object concretization hierarchies the concretize relation-
ship expresses different semantics, e.g., a materializationOf relationship in the Product hier-
archy.

1DL syntax does not differentiate between data properties and object properties.
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Product

<T>

<model>

-costs : Float

<category>

- catMgr : String

Car

<model>

- maxSpeed : int

<category>

- catMgr = "MsWhite"

<brand>

6oo7
<model>

<category>

- catMgr = "MrBlack"8
arr
9
Pott

:
r
;

<model>

- costs = 4 Por<c=>?@@
<model>

<brand>

PorAcBCDEEFarrCraG
<model>

- costs = 55.000

- maxSpeed = 250

PorAcBCDEEHIJ
<model>

- costs = 60.000

- maxSpeed = 260

Figure 3.1: OWL mapping example 1 - gm-objects

Time

<T>

<month>

<year>

2009

<month>

<year>

2010

<month>

<year>

Feb.09

<month>

Jän.10

<month>

Feb.10

<month>

Figure 3.2: OWL mapping example 2 - gm-objects
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<country> <region>

Location

<T>

<city>

-inhabitants : int

Switzerland

<country>

<city>

<store>

<kanton>

Alps

<region>

<city>

Austria

<country>

<store>

<city>

Vaud

<kanton>

<store>

<city>

Lausanne

<city>

- inhabitants=119.000

<store>

Montreux

<city>

- inhabitants=58.381

<store>

Salzburg

<city>

- inhabitants=148.470

<store>

tellinc

<store>

gessierLtd

<store>

TschudiComp

<store>

Figure 3.3: OWL mapping example 3 - gm-objects
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<country> <region>

Location

<T>

<city>

-inhabitants : int

Time

<T>

<month>

<year>

Product

<T>

<model>

-costs : Float

<category>

- catMgr : String

sales-Product-Time-Location

„Product“ „Time“ „Location“

<category, year, country>

- minPrice : Float

<model, month, city>

- discount : Float

Car

<model>

- maxSpeed : int

<category>

- catMgr = "MsWhite"

<brand>

2009

<month>

<year>

Switzerland

<country>

<kanton>

<city>

<store>

sales-Car-2009-Switzerland

„Product“

„Time“

„Location“

<category, year, country>

- minPrice = 10.000

<brand, month, city>

- minQty : int = 2

<model, month, city>

- discount : Float

Figure 3.4: OWL mapping example - gm-relationships

3.2 Mapping Algorithm for GM-Objects

In this section each step of the mapping for gm-objects to OWL is explained. To exemplify
in this section the mapping output for the gm-object Salzburg, see figure 3.3, is provided. The
mapping procedure is summarized as algorithm, see Algorithm 1.
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input : A set O of gm-objects o =
�

Lo,Ao, po, lo, do, vo

�

, a concretization hierarchyHO and
an universe of levels L.

output: A set of OWL axioms.

1 assert: concretize v concretize_t
2 assert: concretize_t+ v concretize_t
3 for all o ∈O do

4 assert: [ l̂o]([o])
5 if ∃ō : (o, ō) ∈HO then
6 concretize([o],[ō])
7 end

8 for all a ∈ Âo do
9 assert: [a]

�

[o],[vo(a)]
�

10 end

11 for all a ∈Ao \ Âo do
12 assert IC: ∃concretize_t.{[o]} u [lo(a)] v ∀[a].[do(a)] u = 1 [a].>
13 if vo(a) is defined then
14 assert IC: [lo(a)] u ∃concretize_t.{[o]} v ∃[a].{[vo(a)]}
15 end
16 end

17 for all (l , l̄ ) ∈ Po : l̄ 6= l̂o ∧
�

6 ∃ō ∈O : (o, ō) ∈HO ∧ (l , l̄ ) ∈ Pō

�

do

18 assert IC: ∃concretize_t.{[o]} u [l ] v ∃concretize_t.{[o]} u [ l̄ ]
19 end
20 for all a ∈Ao : 6 ∃ō ∈O : (o, ō) ∈HO ∧ a ∈Aō do
21 assert IC: ∃[a].> v ∃concretize_t.{[o]} u [lo(a)]
22 end

23 for all l ∈ Lo : l 6= l̂o ∧
�

6 ∃ō ∈O : (o, ō) ∈HO ∧ l ∈ Lō

�

do
24 assert IC: [l ] v concretize_t.{[o]}
25 end
26 end

27 for all l ∈ L, l̄ ∈ L \ l do

28 [l ] u [ l̄] v ⊥
29 end
30 for all o ∈O , ō ∈O \ o do
31 [o] 6 ≈ [ō]
32 end

Algorithm 1: Mapping GM-Objects to OWL
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Gm-objects and concretizations

In order to map concretization hierarchies, which are composed of gm-objects, to OWL each
gm-object is represented as individual, e.g., Salzburg, and each abstraction level as primitive
class, e.g., city. Moreover, each gm-object is assigned to an abstraction level by a class assertion
(see Algorithm 1, line 4). The level of abstraction corresponds to the top level of the gm-
object. In addition, each gm-object is connected to its parent gm-objects, if they exist, by
applying a property concretize (see Algorithm 1, line 5-7). Here the gm-object Salzburg is
associated to the individual Salzburg, which is a member of the class city and concretizes the
individuals Alps and Austria.

city(Salzburg)
concretize(Salzburg,Alps)
concretize(Salzburg,Austria)

Top-level attributes

An attribute must have a value from its domain if the level of the attribute is equivalent to
the top-level of the gm-object. Property assertions are applied to handle values of top-level
attributes since those are attributes, which describe the gm-object itself (see Algorithm 1, line
8-10). For example, city Salzburg has a number of inhabitants.

inhabitants(Salzburg,148.470)

Levels of abstraction and navigation

A level of a gm-object is interpreted as a container for all direct or indirect concretizations
of the gm-object at the respective level. That is why the mapping considers any level of
abstraction as class. Such an approach has many advantages, because it allows

• to define common characteristics of the class members,

• to define additional constraints,

• to provide entry points for queries.
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The class of individuals o 〈l 〉 that belong to the abstraction level l and are direct or indirect
concretizations of individual o correspond to the class expression

∃concretize_t.{[o]} u [l ]

where concretize_t is defined as transitive super-property of concretize. For example, the
class of all Location cities, Location<city> corresponds to the class expression

∃concretize_t.{Location} u city

Subsumption hierarchies

A concretization hierarchy induces several subsumption hierarchies, i.e., there is one sub-
sumption hierarchy for each level of abstraction. For example, from

concretize(Salzburg,Austria)

an OWL reasoner should conclude that the term

∃concretize_t.{Austria} u store

subsumes

∃concretize_t.
�

Salzburg
	

u store

This particular feature (of OWL) allows for consistency checks as well as inheritance between
classes.

Common characteristics

Class axioms are used to define common characteristics for members of a particular level of
a gm-object. Attributes are represented by data properties with values and number restric-
tions (see Algorithm 1, line 11-16). Values of attributes could be shared with gm-objects at
lower levels (see Algorithm 1, line 11-16). The axioms are interpreted as integrity constraints.
Otherwise semantics of the gm-object approach is lost. For example, the container Loca-
tion<city> has a number of inhabitants of type Integer.

IC: ∃concretize_t.{Location} u city v ∀inhabitants.Integer u = 1 inhabitants.>

A level l of a gm-object o guarantees that concretizations of o at lower levels also concretize
a concretization of o at the level l (see Algorithm 1, line 17-19). These integrity constraints
allow stable upward navigation and enhance heterogeneous level hierarchies since we allow
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that gm-objects can introduce new levels of abstraction. It is worth mentioning that the new
levels are valid for descendants of the corresponding gm-object, hence, which are not valid for
descendants of other gm-objects. For example, all Switzerland cities belong to a Switzerland
kanton since the gm-object introduces the new abstraction level kanton.

IC: ∃concretize_t.
�

Switzerland
	

u city v
∃concretize_t.
�

∃concretize_t.
�

Switzerland
	

u kanton
�

Each attribute is allowed to be introduced exactly at one level of one gm-object (see Algo-
rithm 1, line 20-22) and each level is allowed to be introduced exactly at one gm-object (see
Algorithm 1, line 23-25).

Gm-objects and levels

The mapping has to guarantee that a gm-object belongs to maximum one abstraction level.
Thus, all levels are supposed to be pairwise disjoint (see Algorithm 1, line 27-29). For example,
an individual at level country cannot be at the level city.

country u city v⊥

Unique name assumption

To confine to the unique name assumption we state that each pair of gm-objects refers to
different individuals (see Algorithm 1, line 30-32). For example, Salzburg and Montreux are
different individuals.

Salzburg 6 ≈Montreux

Main extension in comparison to m-object mapping approach

For the mapping of gm-objects there is a main difference with respect to the approach of
Neumayr and Schrefl [2009] restricted to m-objects. Since gm-objects can concretize a set of
gm-objects in hetero-homogeneous systems we do not have

(
(
(
(
(
(
(
(
((

> v 1 concretize
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3.3 Mapping Algorithm for GM-Relationships

For the mapping of gm-relationships there are actually two different approaches available.
On the one-hand gm-relationships can be represented as properties (property approach) or as
individuals (objectification approach) in OWL. But property assertions do not have identifiers
and so it is impossible to directly represent concretization links. If we follow the property ap-
proach each connection-level of a gm-relationship is represented as property and redundantly
a concretization-link between two gm-relationships is represented by several sub-property-
axioms. Thus, in order to avoid any redundancy we propose the objectification approach,
similar to Neumayr and Schrefl [2009], which maps gm-relationships to individuals and al-
lows to directly represent concretization links between gm-objects in contrast to the previous
mapping approach.

Similar to the mapping of gm-objects each step of the mapping for gm-relationships to OWL
is explained. In order to exemplify the mapping, in this section the mapping output for the
gm-relationship sales is provided. The mapping procedure is summarized as algorithm, see
Algorithms 2 - 3.

Gm-relationships and concretizations

Because of the objectification approach each gm-relationship is represented as individual,
which is linked to its parent gm-relationships, if they exist, and to its gm-objects by prop-
erty assertions. Thereby, the property concretize and sub-properties of (the property) relat-
edTo are used, respectively (see Algorithm 2, line 4-10). The gm-relationship sales between
the gm-objects Car, 2009 and Switzerland, named sales-Car-2009-Switzerland, concretizes the
gm-relationship sales between the gm-objects Product, Time and Location, named sales-Product-
Time-Location. Thus, we have

concretize(sales-Car-2009-Switzerland,sales-Product-Time-Location)
relatedToProduct(sales-Car-2009-Switzerland,Car)
relatedToProduct v relatedTo
relatedToTime(sales-Car-2009-Switzerland,2009)
relatedToTime v relatedTo
relatedToLocation(sales-Car-2009-Switzerland,Switzerland)
relatedToLocation v relatedTo

A gm-relationship constrains the relatives (see Algorithm 2, line 11-19). At least one relative
of a (direct or indirect) concretization of the gm-relationship sales-Car-2009-Switzerland must
concretize a relative of the gm-relationship sales-Car-2009-Switzerland.
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input : A set R of gm-relationships r = (Or ,Cr ,Ar , cr , dr , vr ) and a concretization
hierarchyHR.

output: A set of OWL axioms.

1 assert: concretizev contretize_t
2 assert: concretize_t+ v contretize_t
3 for all r ∈ R do
4 if ∃ r̄ : (r, r̄ ) ∈HR then
5 assert: concretize([r ],[ r̄ ])
6 end
7 for i = 1, . . . , m do
8 assert: relatedTo[nr (i)]

�

[r ],[oi]
�

9 assert: relatedTo[nr (i)] v relatedTo
10 end
11 aux= „⊥“
12 for all i = 1, . . . , m do
13 aux= aux+ „t (∀relatedTo[nr (i)].

�

∃concretize_t.{[oi]}
�

“
14 for all j = 1, . . . , i − 1, i + 1, . . . , m do

15 aux= aux+ „u (∀relatedTo[nr ( j )].
�

∃concretize_t.
¦

[o j ]
©

t
¦

[o j ]
©�

)“

16 end
17 aux= aux+ „)“
18 end
19 assert IC: ∃concretize_t.{[r ]} v [aux]

20 for all a ∈Ar : cr (a) = l̂r do
21 assert: [a]

�

[r ],[vr (a)]
�

22 end

23 for all a ∈Ar : cr (a) = (l1, . . . , lm) 6= l̂r do
24 aux= „∃concretize_t.{[r ]} u “
25 aux= aux+ „∃relatedTo[nr (1)].[l1]u . . . u ∃relatedTo[nr (m)].[lm]“
26 assert IC: [aux] v ∀[a].[dr (a)] u = 1 [a].>
27 if vr (a) is defined then
28 [aux] v ∃[a].{[vr (a)]}
29 end
30 end
31 end

Algorithm 2: Mapping GM-Relationships to OWL - Part I



3. OWL Mapping 3.3. Mapping Algorithm for GM-Relationships 39

input : A set R of gm-relationships r = (Or ,Cr ,Ar , cr , dr , vr ) and a concretization
hierarchyHR.

output: A set of OWL axioms.

1 for all r ∈ R do

2 for all l =
�

l1, . . . , lm

�

∈Cr : l 6= l̂r do
3 assert IC: ∃concretize_t.{[r ]} . . .
4 assert IC: . . . u (∃relatedTo[nr (1)]. (∃concretize_t.[l1]t [l1]) . . .
5 assert IC: . . . t . . . t∃relatedTo[nr (m)].

�

∃concretize_t.[lm]t [lm]
�

) . . .
6 assert IC: . . . v ∃concretize_t.( . . .
7 assert IC: . . . ∃concretize_t.{[r ]}u . . .
8 assert IC: . . . ∃relatedTo[nr (1)].[l1]u . . . u∃relatedTo[nr (m)].[lm]) . . .
9 assert IC: . . . t (∃relatedTo[nr (1)].[l1] u . . . u∃relatedTo[nr (m)].[lm])

10 end
11 for all a ∈Ar : 6 ∃ r̄ ∈ R : (r, r̄ ) ∈HR ∧ a ∈Ar̄ do
12 aux= „∃concretize_t.{[r ]} u “
13 aux= aux+ „∃relatedTo[nr (1)].[l1] u . . . u ∃relatedTo[nr (m)].[lm]“
14 assert IC: ∃[a].> v [aux]
15 end

16 for all l =
�

l1, . . . , lm

�

∈Cr : l 6= l̂r ∧
�

6 ∃ r̄ ∈ R : (r, r̄ ) ∈HR ∧ l ∈C r̄

�

do
17 assert IC:

�

∃relatedTo[nr (1)].[l1] u . . . u ∃relatedTo[nr (m)].[lm]
�

. . .
18 assert IC: . . . v concretize_t.{[r ]}
19 end
20 end
21 for all r ∈ R, r̄ ∈ R \ r do
22 [r ] 6 ≈ [ r̄ ]
23 end

Algorithm 3: Mapping GM-Relationships to OWL - Part II
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IC: ∃concretize_t.
�

sales-Car-2009-Switzerland
	

v . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009} t {2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

t
�

Switzerland
	

)) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car} t {Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

t
�

Switzerland
	

)) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car} t {Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009} t {2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

)) . . .

Top-connection-level attributes

An attribute must have a value from its domain if the connection-level of the attribute is equiv-
alent to the top-connection-level of the gm-relationship, otherwise it is optional. Property
assertions are applied to handle values of attributes since those are attributes, which describe
the gm-relationship itself (see Algorithm 2, line 20-22). For example, the gm-relationship
sales-Car-2009-Switzerland has a minimal price, i.e.,

minPrice(sales-Car-2009-Switzerland,10.000)

Common characteristics

Class axioms are used to define common characteristics for members of a particular connecti-
on-level of a gm-relationship. Attributes are represented by data properties with values and
number restrictions (see Algorithm 2, line 23-30). Values of attributes could be shared with
gm-relationships at lower levels (see Algorithm 2, line 23-30). The axioms are interpreted
as integrity constraints. Otherwise semantics of the gm-relationships approach is lost. For
example, sales-Product-Time-Location at connection level <category, year, country> has an at-
tribute minPrice of type Float.

IC: ∃concretize_t.
�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.category u . . .
. . . ∃relatedToTime.year u . . .
. . . ∃relatedToLocation.country . . .
. . . v∀minPrice.Float u= 1 minPrice.>
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Each attribute is allowed to be introduced exactly at one connection-level of one gm-relationship
(see Algorithm 3, line 11-15) and each connection-level is allowed to be introduced exactly at
one relationship (see Algorithm 3, line 16-19).

Connection levels

For abstraction levels of gm-objects safe upward navigation must be guaranteed, whereas for
connection-levels of gm-relationships safe navigation along gm-relationships at higher level
must be ensured. Constraints concerning connection-levels are considered in form of in-
tegrity constraints. A connection-level l = (l1, . . . , ln) ∈ Cr of a gm-relationship r ensures
that concretizations of r at levels below l concretize a gm-relationship at level l that con-
cretize r . The axioms are also interpreted as integrity constraints (see Algorithm 3, line 2-10).

IC: ∃concretize_t.
�

sales-Product-Time-Location
	

. . .
. . . u (∃relatedToProduct.(∃concretize_t.category t category) . . .
. . . t ∃relatedToTime.(∃concretize_t.year t year) . . .
. . . t ∃relatedToLocation.(∃concretize_t.country t country)) . . .
. . . v ∃concretize_t.(∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.category . . .
. . . u ∃relatedToTime.year . . .
. . . u ∃relatedToLocation.country) . . .
. . . t (∃relatedToProduct.category . . .
. . . u ∃relatedToTime.year . . .
. . . u ∃relatedToLocation.country)

Unique name assumption

To confine to the unique name assumption we state that each pair of gm-relationships refers to
different individuals (see Algorithm 3, line 21-23). For example, sales-Product-Time-Location
and sales-Car-2009-Switzerland are different individuals.

sales-Product-Time-Location 6 ≈ sales-Car-2009-Switzerland

Navigation

Gm-relationships can be queried using OWL reasoners. Thereby, navigation along gm-relati-
onships can be used in terms of class expressions. In order to query for cars, which were sold
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in Switzerland in the year 2009, we ask for the members of the class

Car u ∃relatedToProduct−.((∃concretize_t.
�

sales-Product-Time-Location
	

t
�

sales-Product-Time-Location
	

) . . .
. . . u ∃relatedToTime.(∃concretize_t−.{2009} t {2009}) . . .
. . . u ∃relatedToLocation.(∃concretize_t−.

�

Switzerland
	

t
�

Switzerland
	

))

Main extension in comparison to m-object mapping approach

For the mapping of gm-relationships there are significant differences with respect to the ap-
proach of Neumayr and Schrefl [2009] restricted to m-objects. A gm-relationships can con-
cretize a set of gm-relationships in hetero-homogeneous systems. Thus, we do not have

(
(
(
(
(
(
(
(
((

> v 1 concretize

Moreover, attributes are included, which describe the gm-relationships themselves.

3.4 Entire Mapping Result

Let us illustrate the mapping procedure for gm-objects and gm-relationships by presenting the
full mapping result of the running example.

3.4.1 GM-Object Concretization Hierarchy Product

The mapping result of the gm-object concretization hierarchy Product is given by the follow-
ing mapping outputs.

concretize v concretize_t
concretize_t+ v concretize_t

Mapping Output 4: General Axioms
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T(Product)
IC: ∃concretize_t.

�

Product
	

u category v ∀catMgr.String u= 1 catMgr.>
IC: ∃concretize_t.

�

Product
	

umodel v ∀costs.Float u= 1 costs.>
IC:
∃concretize_t.
�

Product
	

umodel v ∃concretize_t.
�

∃concretize_t.
�

Product
	

u category
�

IC: ∃catMgr.> v
�

∃concretize_t.
�

Product
	

t
�

Product
	�

u category
IC: ∃costs.> v

�

∃concretize_t.
�

Product
	

t
�

Product
	�

umodel
IC: categoryv ∃concretize_t.{T}
IC: modelv ∃concretize_t.{T}

Mapping Output 5: GM-Object Product

category(Book)
concretize(Book,Product)
catMgr(Book,„MrBlack“)

Mapping Output 6: GM-Object Book

country(Car)
concretize(Car,Product)
catMgr(Book,„MsWhite “)
IC: ∃concretize_t.{Car}umodel v ∀maxSpeed.Integer u= 1 maxSpeed.>
IC: ∃concretize_t.{Car}umodelv ∃concretize_t.

�

∃concretize_t.{Car} u brand
�

IC: ∃maxSpeed.> v (∃concretize_t.{Car}t {Car})umodel
IC: brandv ∃concretize_t.{Car}

Mapping Output 7: GM-Object Car

model(HarryPotter4)
concretize(HarryPotter4,Book)
costs(HarryPotter,4)

Mapping Output 8: GM-Object HarryPotter4

brand(Porsche911)
concretize(Porsche911,Car)

Mapping Output 9: GM-Object Porsche911
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model(Porsche911CarreraS)
concretize(Porsche911CarreraS,Prosche911)
costs(Porsche911CarreraS,55.000)
maxSpeed(Porsche911CarreraS,250)

Mapping Output 10: GM-Object Porsche911CarreraS

model(Porsche911GT3)
concretize(Porsche911GT3,Prosche911)
costs(Porsche911GT3,60.000)
maxSpeed(Porsche911GT3,260)

Mapping Output 11: GM-Object Porsche911GT3

T u category v⊥
T u brand v⊥
T umodel v⊥
category u T v⊥
category u brand v⊥
category umodel v⊥
brand u T v⊥
brand u category v⊥
brand umodel v⊥
model u T v⊥
model u category v⊥
model u brand v⊥

Mapping Output 12: Disjoint Levels

Porsche911 6 ≈ Product
Porsche911 6 ≈ Book
Porsche911 6 ≈ Car
Porsche911 6 ≈HarryPotter4
Porsche911 6 ≈ Porsche911CarreraS
Porsche911 6 ≈ Porsche911GT3

Mapping Output 13: Unique Name Assumption (only for Porsche911)
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3.4.2 GM-Object Concretization Hierarchy Time

The mapping result of the gm-object concretization hierarchy Time is given by the following
mapping outputs.

concretize v concretize_t
concretize_t+ v concretize_t

Mapping Output 14: General Axioms

T(Time)
IC: ∃concretize_t.{Time}umonth v ∃concretize_t. (∃concretize_t.{Time}u year)
IC: yearv ∃concretize_t.{T}
IC: monthv ∃concretize_t.{T}

Mapping Output 15: GM-Object Time

year(2009)
concretize(2009,Time)

Mapping Output 16: GM-Object 2009

year(2010)
concretize(2010,Time)

Mapping Output 17: GM-Object 2010

month(Feb.09)
concretize(Feb.09,2009)

Mapping Output 18: GM-Object Feb.09

month(Jän.10)
concretize(Jän.10,2010)

Mapping Output 19: GM-Object Jän.10
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month(Feb.10)
concretize(Feb.10,2010)

Mapping Output 20: GM-Object Feb.10

T u year v⊥
T umonth v⊥
year u T v⊥
year umonth v⊥
month u T v⊥
month u year v⊥

Mapping Output 21: Disjoint Levels

Feb.09 6 ≈ Time
Feb.09 6 ≈ 2009
Feb.09 6 ≈ 2010
Feb.09 6 ≈ Jän.10
Feb.09 6 ≈ Feb.10

Mapping Output 22: Unique Name Assumption (only for Feb.09)

3.4.3 GM-Object Concretization Hierarchy Location

The mapping result of the gm-object concretization hierarchy Location is given by the follow-
ing mapping outputs.

concretize v concretize_t
concretize_t+ v concretize_t

Mapping Output 23: General Axioms
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T(Location)
IC: ∃concretize_t.{Location}u city v ∀inhabitants.Integer u= 1 inhabitants.>
IC: ∃concretize_t.{Location}u city v ∃concretize_t. (∃concretize_t.{Location}u country)
IC: ∃concretize_t.{Location}u city v ∃concretize_t. (∃concretize_t.{Location}u region)
IC: ∃inhabitants.> v (∃concretize_t.{Location}t {Location})u city
IC: countryv ∃concretize_t.{T}
IC: regionv ∃concretize_t.{T}
IC: cityv ∃concretize_t.{T}

Mapping Output 24: GM-Object Location

country(Switzerland)
concretize(Switzerland,Location)
IC:
∃concretize_t.
�

Switzerland
	

ucityv ∃concretize_t.
�

∃concretize_t.
�

Switzerland
	

u kanton
�

IC: kantonv ∃concretize_t.
�

Switzerland
	

Mapping Output 25: GM-Object Switzerland

region(Alps)
concretize(Alps,Location)

Mapping Output 26: GM-Object Alps

country(Austria)
concretize(Austria,Location)

Mapping Output 27: GM-Object Austria

kanton(Vaud)
concretize(Vaud,Switzerland)

Mapping Output 28: GM-Object Vaud

city(Lausanne)
concretize(Lausanne,Vaud)
concretize(Lausanne,Alps)

Mapping Output 29: GM-Object Lausanne
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city(Montreux)
concretize(Montreux,Vaud)
concretize(Montreux,Alps)

Mapping Output 30: GM-Object Montreux

city(Salzburg)
concretize(Salzburg,Alps)
concretize(Salzburg,Austria)

Mapping Output 31: GM-Object Salzburg

store(tellInc)
concretize(tellInc,Lausanne)

Mapping Output 32: GM-Object tellInc

store(gessierLtd)
concretize(gessierLtd,Lausanne)

Mapping Output 33: GM-Object gessierLtd

store(TschudiComp)
concretize(TschudiComp,Montreux)

Mapping Output 34: GM-Object TschudiComp
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T u country v⊥
T u region v⊥
T u kanton v⊥
T u city v⊥
country u T v⊥
country u region v⊥
country u kanton v⊥
country u city v⊥
region u T v⊥
region u country v⊥
region u kanton v⊥
region u city v⊥
kanton u T v⊥
kanton u country v⊥
kanton u region v⊥
kanton u city v⊥
city u T v⊥
city u country v⊥
city u region v⊥
city u kanton v⊥

Mapping Output 35: Disjoint Levels

Salzburg 6 ≈ Location
Salzburg 6 ≈ Switzerland
Salzburg 6 ≈ Alps
Salzburg 6 ≈ Salzburg
Salzburg 6 ≈ Vaud
Salzburg 6 ≈ Lausanne
Salzburg 6 ≈Montreux
Salzburg 6 ≈ tellInc
Salzburg 6 ≈ gessierInc
Salzburg 6 ≈ TschudiComp

Mapping Output 36: Unique Name Assumption (only for Salzburg)

3.4.4 GM-Relationship Concretization Hierarchy sales

The mapping result of the gm-relationship concretization hierarchy sales is given by the fol-
lowing mapping outputs.
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concretize v concretize_t
concretize_t+ v concretize_t

Mapping Output 37: General Axioms

relatedToProduct(sales-Product-Time-Location,Product)
relatedToProduct v relatedTo
relatedToTime(sales-Product-Time-Location,Time)
relatedToTime v relatedTo
relatedToLocation(sales-Product-Time-Location,Location)
relatedToLocation v relatedTo
IC: ∃concretize_t.

�

sales-Product-Time-Location
	

v . . .
. . . (∀relatedToProduct.(∃concretize_t.

�

Product
	

) . . .
. . . u ∀relatedToTime.(∃concretize_t.{Time} t {Time}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.{Location} t {Location})) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.

�

Product
	

t
�

Product
	

) . . .
. . . u ∀relatedToTime.(∃concretize_t.{Time}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.{Location} t {Location})) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.

�

Product
	

t
�

Product
	

) . . .
. . . u ∀relatedToTime.(∃concretize_t.{Time} t {Time}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.{Location})) . . .
IC: ∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.category u . . .
. . . ∃relatedToTime.year u . . .
. . . ∃relatedToLocation.country . . .
. . . v∀minPrice.Float u= 1 minPrice.>
IC: ∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.model u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
. . . v∀discount.Float u= 1 discount.>

Mapping Output 38: GM-Relationship sales-Product-Time-Location - Part I
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IC: ∃concretize_t.
�

sales-Product-Time-Location
	

. . .
. . . u (∃relatedToProduct.(∃concretize_t.category t category) . . .
. . . t ∃relatedToTime.(∃concretize_t.year t year) . . .
. . . t ∃relatedToLocation.(∃concretize_t.country t country)) . . .
. . . v ∃concretize_t.(∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.category . . .
. . . u ∃relatedToTime.year . . .
. . . u ∃relatedToLocation.country) . . .
. . . t (∃relatedToProduct.category . . .
. . . u ∃relatedToTime.year . . .
. . . u ∃relatedToLocation.country)
IC: ∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u (∃relatedToProduct.(∃concretize_t.model t model) . . .
. . . t ∃relatedToTime.(∃concretize_t.month t month) . . .
. . . t ∃relatedToLocation.(∃concretize_t.city t city)) . . .
. . . v ∃concretize_t.(∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.model . . .
. . . u ∃relatedToTime.month . . .
. . . u ∃relatedToLocation.city) . . .
. . . t (∃relatedToProduct.model . . .
. . . u ∃relatedToTime.month . . .
. . . u ∃relatedToLocation.city)
∃minPrice.> v ∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.category u . . .
. . . ∃relatedToTime.year u . . .
. . . ∃relatedToLocation.country . . .
∃discount.> v ∃concretize_t.

�

sales-Product-Time-Location
	

. . .
. . . u ∃relatedToProduct.model u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
∃relatedToProduct.category u . . .
. . . ∃relatedToTime.year u . . .
. . . ∃relatedToLocation.country . . .
. . . v ∃concretize_t.

�

sales-Product-Time-Location
	

∃relatedToProduct.model u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
. . . v ∃concretize_t.

�

sales-Product-Time-Location
	

Mapping Output 39: GM-Relationship sales-Product-Time-Location - Part II
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concretize(sales-Car-2009-Switzerland,sales-Product-Time-Location)
relatedToProduct(sales-Car-2009-Switzerland,Car)
relatedToProduct v relatedTo
relatedToTime(sales-Car-2009-Switzerland,2009)
relatedToTime v relatedTo
relatedToLocation(sales-Car-2009-Switzerland,Switzerland)
relatedToLocation v relatedTo
IC: ∃concretize_t.

�

sales-Car-2009-Switzerland
	

v . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009} t {2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

t
�

Switzerland
	

)) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car} t {Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

t
�

Switzerland
	

)) . . .
. . . t . . .
. . . (∀relatedToProduct.(∃concretize_t.{Car} t {Car}) . . .
. . . u ∀relatedToTime.(∃concretize_t.{2009} t {2009}) . . .
. . . u ∀relatedToLocation.(∃concretize_t.

�

Switzerland
	

)) . . .
minPrice(sales-Car-2009-Switzerland,10.000)
IC: ∃concretize_t.

�

sales-Car-2009-Switzerland
	

. . .
. . . u ∃relatedToProduct.brand u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
. . . v∀minQty.Integer u= 1 minQty.>

Mapping Output 40: GM-Relationship sales-Car-2009-Switzerland - Part I
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IC: ∃concretize_t.
�

sales-Car-2009-Switzerland
	

. . .
. . . u (∃relatedToProduct.(∃concretize_t.brand t brand) . . .
. . . t ∃relatedToTime.(∃concretize_t.month t month) . . .
. . . t ∃relatedToLocation.(∃concretize_t.city t city)) . . .
. . . v ∃concretize_t.(∃concretize_t.

�

sales-Car-2009-Switzerland
	

. . .
. . . u ∃relatedToProduct.brand . . .
. . . u ∃relatedToTime.month . . .
. . . u ∃relatedToLocation.city) . . .
. . . t (∃relatedToProduct.brand . . .
. . . u ∃relatedToTime.month . . .
. . . u ∃relatedToLocation.city)
∃minQty.> v ∃concretize_t.

�

sales-Car-2009-Switzerland
	

. . .
. . . u ∃relatedToProduct.brand u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
∃relatedToProduct.brand u . . .
. . . ∃relatedToTime.month u . . .
. . . ∃relatedToLocation.city . . .
. . . v ∃concretize_t.

�

sales-Car-2009-Switzerland
	

Mapping Output 41: GM-Relationship sales-Car-2009-Switzerland - Part II

sales-Product-Time-Location 6 ≈ sales-Car-2009-Switzerland

Mapping Output 42: Unique Name Assumption



4 Related Work, Suggestions for Further
Work and Conclusions

In this last chapter additional related work with respect to meta-modeling support in OWL
and several suggestions for further work are revealed, and some conclusions of the proposed
conceptual modeling approach and the associated OWL mapping are provided.

4.1 Related Work for Meta-Modeling in OWL

A well-known meta-modeling technique in the current version of OWL, namely OWL 2, is
“punning”. It allows to use a single symbol to refer to any or all of an individual, a class,
or a property and, thus, the introduction of ontological meta-classes to express relationships
between instances and classes. Punning is a simple way to provide decidable meta-modeling
facilities, which is supported by several OWL reasoners and typically seems to satisfy the
semantic requirements.

A conceptual modeling approach, which is closely related to and contained in our approach, is
Materialization, as already mentioned in section 1.2. In Borgida and Brachman [2003] a suit-
able mapping of the materialization relationship to DLs is presented in term of roles and/or
sub-roles of materializationOf, which can directly be applied to obtain a meta-modeling facil-
ity in OWL.

4.2 Suggestions for Further Work

In the opinion of the author there are some issues, which can be considered in further work:

• The identification of potential for optimization with respect to reasoning performance,
e.g., in term of a suitable pre-calculation of subsumption hierarchies. In the present
diploma thesis a conceptual modeling approach was discussed, which can suitably be
mapped to OWL for ontological engineering. Hence, optimization issues have not been
discussed at all.

• Software support for modeling hetero-homogeneous hierarchies with gm-objects and
gm-relationships, e.g., in form of a plug-in for the software tool Protégé1, such that an
additional meta-modeling technique in OWL is facilitated.

1See http://www.co-ode.org/resources/ for the ontology engineering with the Protégé plugin.

54
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• Software support for fully automated mapping of gm-objects and gm-relationships to
OWL and corresponding OWL reasoning if the original hierarchy model does not rely
on OWL directly.

• Extension of gm-objects to allow for parent relations, which are represented by multi-
graphs, i.e., levels of abstraction can be related by multiple concretize-relationships.

• Different approaches to combine closed-world assumption and open-world assumption
regarding the mapping to OWL, while preserving the semantics of gm-objects and gm-
relationships.

4.3 Conclusions

In chapter 2 a multi-level modeling approach based on gm-objects and gm-relationships was
introduced to particularly model hetero-homogeneous hierarchies. The main idea was to
encapsulate levels of abstraction by means of gm-objects, which can again be related by gm-
relationships at certain connection-levels. Gm-objects as well as gm-relationships can be orga-
nized in (multi-dimensional) concretization hierarchies. As shown by plenty of examples the
modeling approach seems to be rather intuitive and incorporates existing multi-level model-
ing techniques and essential aspects of abstraction hierarchies. Thus, it is very promising that
this technique allows to suitably tackle the problem of increasing complexity and amount of
ancillary effects of information systems.

Supplementarily, in chapter 3 a mapping between the multi-level modeling approach and
OWL was proposed. The ideas and concepts were transferred from conceptual modeling to
ontological engineering, while preserving their semantics. So existing reasoning techniques
can be used to analyze the data to improve the quality of the underlying ontology, and to
query and access data in the semantic web at multiple levels of abstraction.

Finally, in this chapter we have stated some important issues, which have not been considered
yet. So there is potential for extending the proposed modeling framework in terms of both
the conceptual modeling part and the ontological engineering part.
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