
 DIPLOMARBEIT

Shared Virtual Space
Distribution Manager

– SVSDM –
Use Cases

ausgeführt

 am Institut für Computersprachen E 185

Programmiersprachen und Übersetzer Gruppe E 185-1

unter Anleitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. eva Kühn

eingereicht

an der Technischen Universität Wien

Fakultät für Informatik

von

Marcus Mor

Wiedner Hauptstraße 18/1.Mezz/6
A-1040 Wien

marcus@mor.at

Matrikelnummer: 9825311

Wieden, 18. Oktober 2005

 DIPLOMA THESIS

Shared Virtual Space
Distribution Manager

– SVSDM –
Use Cases

conceived

at the Institute of Computer Languages E 185

Compilers and Languages Group E 185-1

supervised by

Ao. Univ. Prof. Dipl.-Ing. Dr. eva Kühn

submitted

at the Technical University of Vienna

Faculty of Computer Science

by

Marcus Mor

Wiedner Hauptstraße 18/1.Mezz/6
A-1040 Vienna Austria

marcus@mor.at

Registration Number: 9825311

Wieden, 18th of October 2005

in memoriam

Josefa Maier

Diese Arbeit ist bewußt in der alten deutschen Rechtschreibung gehalten,

da viele der neuen Regeln Sinnwidrigkeiten aufweisen

und sich damit gegen die deutsche Sprache selbst richten.

Many of the notations used by manufacturers and sellers to distinguish their products are

claimed as trademarks and registered trademarks. Where those designations appear

in this work the author was aware of a trademark claim. All product names mentioned

remain trademarks or registered trademarks of their respective owners.

Kurzfassung / Abstract

 4

Kurzfassung

Viele Arbeitsvorgänge in Wirtschaft und Alltag verlangen die Verteilung von Daten.

Viele Arbeiten werden heutzutage auf tragbaren Geräten (mobile devices) verrichtet.

Deswegen wird die Verteilung von Daten immer wichtiger. Große Software-Firmen

versuchen diesen Bedarf durch die Entwicklung von Synchronisationsprogrammen zu

beheben. Diese sind oft sehr mächtig und benötigen daher viel an Computerleistung.

Bei der Entwicklung solcher Programme wurde offenbar nicht beachtet, daß sie auf

leistungsschwachen Rechnern (thin clients) zum Einsatz kommen.

Eine europäische Versicherungsgesellschaft hatte Bedarf an einer derartigen Software,

die im Hintergrund, ohne viel Leistung zu beanspruchen, den Austausch von Daten

gewährleisten soll.

Diese Arbeit gibt einen Überblick über die verwendete Hintergrundsoftware und ihre

Anwendung in mehreren Einsatzszenarien. Am Beispiel einer Lösung für eine

Versicherung mit mehreren Agenturen wurde ein Prototyp ausgearbeitet, als weitere

Beispiele seien medizinische Notfallteams oder der Nutzen für Mitarbeiter eines

Telephonnetzbetreibers genannt.

Abstract

Many tasks are asking for distribution of data. A lot of workers are already using mobile

devices nowadays. Therefore distributing data is rapidly increasing in importance. Large

software companies are trying to solve this issue by developing synchronizing tools.

Most of them are complex and need quite a lot of computing power. They do not

consider that such a tool should also work on a thin client.

A European insurance company experienced the need for a small piece of software to

solve the synchronizing task in the background without consuming too much system

performance.

This thesis gives an overview of the background software developed, demonstrating

how it can be used in different appliances, for example by an insurance company with

different agencies, as well as by a mobile medical service, and a solution for the workers

of a telecom service provider.

Acknowledgements

 5

Acknowledgements

To say Thank You is something very personal, that is why I would like to write the
Acknowledgements in my mother tongue.

Mein besonderer Dank gilt meiner Diplomarbeitsbetreuerin Prof. eva Kühn, die meine
Ideen aufgegriffen hat, so daß ich meine Vorstellungen verwirklichen konnte. In
besonderer Erinnerung werden mir die drei Tage im Jänner 2004 bleiben, in denen wir
gemeinsam mit Rania Khalaf den Proof of Concept für den Vorgänger des SVSDM
programmiert haben.

Weiters möchte ich Dipl.Ing. Roland Lutz anführen, der mit seinem Insiderwissen in
den Bereichen Wirtschaft und Technik geholfen hat, große Probleme einer Lösung
näher zu bringen. Er hat auch den Kontakt zu einer Deutschen Versicherung vermittelt.

Dipl.Ing. Richard Mordinyi hat mit seiner Diplomarbeit wichtige Vorarbeiten geleistet,
damit meine Arbeit überhaupt möglich wurde und steht mir immer als Freund mit Rat
und Tat zur Seite.

Ich möchte meinen Eltern danken, die mir vor allem in den letzten Monaten viel Zeit
und Unterstützung geschenkt haben, um diese Arbeit zu vollenden. Mein Dank und
meine Liebe gilt auch meinen Großeltern, die mich stets animiert und motiviert haben.

Meine Freundin Dina Dostal hat mir mit ihrer Zuneigung und Verständnis viele
Hindernisse aus dem Weg geräumt und mich unterstützt.

Zum Abschluß möchte ich noch alle Korrekturleserinnen und -leser erwähnen, die viel
Zeit und Mühen in die Auffindung von Tippfehlern investiert haben. Allen voran
Dr.phil. Ursula Kluwick, die vor allem der englischen Grammatik den letzten Schliff
verpaßt hat. Dipl.Ing. Leopold Koppensteiner und Dr.tech. Karl Schiftner haben
diverse Korrekturen beigesteuert.

Ich bedanke mich von ganzem Herzen bei jedem, der zu dieser Arbeit beigetragen hat !

I want to thank everyone who helped to realize this diploma thesis !

Contents

 6

Contents

I Introduction .. 8

I.1 Motivation.. 8
I.2 Distribution ... 10
I.3 World Wide Web .. 11
I.4 Peer-to-peer ... 12
I.5 Problem description ... 13
I.6 Outline.. 16

II Technical background.. 17

II.1 Web Services.. 17
II.2 BPEL .. 19
II.3 Middleware... 24
II.4 Shared Virtual Space Distribution Manager ... 26

II.4.1 Overview ... 26
II.4.2 Inside view... 28
II.4.3 SVSDM API ... 30

II.5 A classical solution.. 40

III Use Case for an Insurance Company .. 42

III.1 Overview.. 42
III.2 Situation.. 44

III.2.1 Actual State ... 44
III.2.2 Problems.. 46
III.2.3 Scenario.. 46
III.2.4 Supported Fields and Persons .. 48

III.3 Prototype.. 49
III.3.1 Requirements .. 49
III.3.2 Solution.. 52
III.3.3 User Interface and Operation... 53
III.3.4 Demonstration.. 64
III.3.5 Profiles ... 64

Contents

 7

IV Use Case for a Mobile Medical Service... 66

IV.1 Situation.. 66
IV.1.1 Actual State ... 66
IV.1.2 Problems.. 67
IV.1.3 Requirements .. 68

IV.2 Possible Solution... 71
IV.2.1 Workflow Management System ... 71
IV.2.2 Operation .. 72

V Other Use Cases ... 74

V.1 Use Case for a Telecom Service Provider ... 74
V.1.1 Situation... 74
V.1.2 Possible solution... 74

V.2 Generic Use Case.. 76

VI Evaluation.. 77

VI.1 Advantages... 77
VI.2 Future Work and Improvements.. 79

VII Conclusion... 80

Acronyms .. 82

References... 84

Printed material.. 84
Online material .. 86

Lists.. 87

Figures... 87
Tables .. 88
Examples .. 88

Appendix... 89

Integration of BPEL4J into an automated environment... 89
Mobile Computing solutions by Xybernaut .. 92

Xybernaut... 92
Wearable computing unit MA TC.. 92
Wireless display unit Atigo T .. 93
Modifications... 95

Introduction Motivation

 8

I Introduction

I.1 Motivation

The space based computing paradigm is a very new field of research where still many

tasks are to be solved or many problems need an answer. In a lecture called

“Middleware Programming” I first came in touch with the concepts of middleware

systems. Target of the lecture was to encourage students in teams of two to develop

programs to a given problem task description with the help of the middleware product

called CoORdinated Shared Object (CORSO) [Kühn01] (based on the space based

computing paradigm).

At that time a colleague and I worked together on a middleware problem description.

He then created a generalized parcel service as diploma thesis [Mord05]. This service

plays an important role in developing the solutions of the use cases described in this

work.

One Use Case was developed together with a large German insurance company (AMB).

The prototype was demonstrated to their department of Information Technology (IT).

They were very interested in the solution and are currently testing how it can be used

within their company’s IT infrastructure. Should the tests be successful they will

probably start another project developing a real life product – which was the aim of this

thesis.

This experience was the driving factor, to develop real life solutions that would make

work tasks simpler. The creation of software together with users is a very exciting task.

It requires having direct input of their needs and receiving feedback during the

development process.

Introduction Motivation

 9

A major problem of software developers is the presumption that what is believed by the

developer to be good for someone, has to be good for the user. Thus it happens in

projects that functions are programmed which are believed to be needed but are actually

not important for the user, while others that would be important are never realized

at all.

The software described in this thesis was developed together with the users or at least in

a field where the developer had knowledge of the context as a user himself.

Agile software development does not take any presumptions and is getting very

important nowadays [www11]. The term agile software development came into

common knowledge in 2001 when the initiators created their manifesto which includes

four simple rules:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

This type of software development is meant for teams (smaller than ten developers),

which are confronted with unpredictable or rapidly changing requirements. These rules

make it possible that user feedback can be included into the development process as

soon as mentioned.

To begin with a short introduction to the “evolution of distribution”.

Introduction Distribution

 10

I.2 Distribution

The WikipeadiA1, the free (online) Encyclopaedia tells the following for the term

“distribution” [www01]. Distribution can mean:

• In mathematics, there are several distinct concepts given the

name of distribution:

o Generalized functions.

o Probability distribution.

o Carnot-Cartheodory manifolds, sub-Riemannian manifold.

• In physics, a distribution function, for example the Maxwell-

Boltzmann distribution, describes the number of particles per

unit volume in phase space.

• In Business operations, distribution is one of the four

aspects of marketing.

• For computing science concepts, distributed computing.

• For the meaning of distribution in the terminology of the

Linux operating system.

• Electricity distribution.

This thesis wants to concentrate on the terms “distributed computing” and “distributed

systems”. A.S. Tanenbaum and M.v. Steen [Tane02] give the following definition:

A distributed system is a collection of independent computers

that appears to its users as a single coherent system.

This statement addresses two aspects: On the one hand it talks about hardware. On the

other hand it refers to a particular kind of software. This software has to create the

assumption of “a single coherent system” [Tane02].

The focus of this thesis is to create this vision and to care for the software issues. The

Appendix contains a detailed description of the mobile hardware that was utilized in the

presented use cases.

1 WikipediA is a Web-based, free-content encyclopedia written collaboratively by volunteers and

sponsored by the non-profit Wikimedia Foundation. [www01]

http://en.wikipedia.org/wiki/Marketing
http://en.wikipedia.org/wiki/Distributed_computing

Introduction World Wide Web

 11

I.3 World Wide Web

Distribution (of data, information) started with the introduction of the World Wide

Web (WWW or Web).

The Web [Rech99] – an information space in which the items, referred as resources, are

identified by global identifiers called Uniform Resource Identifiers (URI) – was created

1989 as a project at the CERN2 in Geneva (Switzerland) by Tim Berners-Lee. The

challenge was to find an easier way to exchange research results with colleagues.

The http3 together with easy-to-use Web browsers achieved a public breakthrough.

Since then everyone has been able to gain easy access to a huge information source,

which nowadays enables the distribution of information through the use of Web

browsers. The Web has not remained without critics, however, who take issue with the

fact that information circulated in that way tends not to be prechecked for accuracy or is

even incorrect.

Today the World Wide Web can be seen as a distributed system. When browsing

through web pages, they have been assembled through a distributed system, allocated

around the world and consisting of different servers.

Servers are still needed to hold the information until a user picks it up from them. For

example in order to use the mail system the POP34 or IMAP5 Server has to be known,

which holds the mailbox.

2 European Organization for Nuclear Research, French: Organisation Européenne pour la Recherche

Nucléaire previously called Conseil Européen pour la Recherche Nucléaire (CERN). [Rech99]

3 HyperText Transfer Protocol (HTTP) is the primary method used to convey information on the

World Wide Web. The original purpose was to provide a way to publish and receive HTML pages

(HyperText Markup Language [a language for creating web pages]). [R ech99]

[Rech99]

[Rech99]

4 Post Office Protocol version 3 (POP3) is an application layer Internet standard protocol used to

retrieve email from a remote server to a local client over a TCP/IP (Transmission Control

Protocol/Internet Protocol is the name for the Internet protocol suite) connection.

5 The Internet Message Access Protocol (IMAP, previously called Interactive Mail Access Protocol)

is an application layer Internet protocol used for accessing email on a remote server from a local client.

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

Introduction Peer-to-peer

 12

I.4 Peer-to-peer

A different attempt is the so called Peer-to-Peer (P2P) approach [Dust03], which is used
to exchange data (file sharing) or for instant messaging, where messages are exchanged
(chatting). P2P uses a network of computers with the endpoints having equal rights. Both
communication partners are on the same step of complexity [Mina01] with no
distinction between client (a piece of software accessing a server) and server (a centralized
service provider).

The term P2P came into common knowledge in 1999 with the creation of the program
Napster by Shawn Fanning. It was intended as an easy to use search engine for finding
shared mp36 files. Each individual user had to download a client, which then was
installed on one’s own computer. Each client had to contact a central server, where all
the files to be shared where registered. Napster provided a self-explanatory, user friendly
GUI7, where users could search for music files listed at the central server. The actual
download was done directly from the provider of the searched file. The P2P model used
is the so called data centred model, where a central server is used to index the
distributed data. Different models can be identified. See the following documents for
more information [Kanh02][Riem03][Gart01].

The product described above worked world wide with one single server as - because of
the design of the clients - the biggest load (the downloading of the data) was handled
between the two clients (searcher to provider, peer-to-peer). Napster showed that simple
software can create a huge success. In 2001 this program was shut down after many
lawsuits. The central server, where the data about the music files were stored, proved to
be the legal problem and so copyright issues became suable.

After that some more P2P applications were created very quickly (Gnutella, FastTrack,
P-Grid [Dust03]), which worked fully decentralised. In order to communicate with all of
them, only one member has to be known. Creating fully self-controled software,
without the need of a central coordinator is a very new point of view.

This sounds easy and natural, but in reality that may look different.

6 MP3 (MPEG-1 Audio Layer 3) is a popular digital audio encoding and lossy compression format.

It was designed to greatly reduce the amount of data in audio files. [www01]

7 A Graphical User Interface (GUI) is a method of interacting with a computer through a metaphor

of direct manipulation of graphical images and widgets in addition to text. [www01]

http://en.wikipedia.org/wiki/MPEG-1
http://en.wikipedia.org/wiki/Metaphor
http://en.wikipedia.org/wiki/Direct_manipulation
http://en.wikipedia.org/wiki/Widget_%28computing%29

Introduction Problem description

 13

I.5 Problem description

In today’s networks often complex organizational structures are represented, where

central computers, so-called servers, control all the flow of information. There exists a

centralized service provider, where the business logic is implemented and the database is

situated.

All participants, or so-called clients, have to connect to one (or more) servers if they want

to use that network. Each client only knows the servers and it is not possible for it to

contact another client without the overhead of using a server, well known to both

clients. They are needed to query or use the above mentioned services.

Those networks are dependent on servers and are called Client/Server Networks [Orfa99].

A good example for that type of network is the Internet, where all information is stored

on servers (web-, email-, newsgroup-server, etc.). Users may collect the information

through different clients.

The solution described above is the classic one.

Nowadays, with the introduction of a great number of mobile devices, the term

distribution is getting far more important. Nearly everyone has a mobile device and

wants to be able to access data or services all the time from different places. To achieve

that two solutions exist: Either being online all the time (this proves to be very

expensive needing to have a mobile connection) - or having to synchronize all needed

data and services with the mobile device. This transforms it actually into a so called

“fat client”, a copy of the centralized service provider holding a sub selection of the data.

Due to the data storage components needed, such a client architecture is similarly

expensive. Furthermore, it is not a good solution to supply all users with a copy of the

service provider, which was intended to be kept centralized to facilitate the updating and

maintaining of its functions.

In view of this problem it is evident that the need of component based software

development has become very important. A standard way of doing so is by the usage of

web services.

Web Services are a new breed of Web applications. They are

self-contained, self-describing, modular applications that can

be published, located, and invoked across the Web.

Introduction Problem description

 14

Web services perform functions, which can be anything from

simple requests to complicated business processes... Once a

Web service is deployed, other applications (and other Web

services) can discover and invoke the deployed service. [www09]

This statement by IBM tells the key features of web services. It sounds very useful but

requires a big overhead of providing all the features described above. The partial

function needed for the location service (so called UDDI8 Service) is still not as useful

as wished. Furthermore, while using a service supplied by a different provider, staying

online is required. This proves still quite expensive. When employing many different

service providers these online calls are time-consuming tasks and often slow-down a

software solution. A solution which takes into account the problems arising when being

offline would be better and faster. (For more detailed information see Chapter II.1)

However an out-of-the-box solution will prove disappointing since they are difficult to

find in a shop. Even then they often have to be customized in a very complicated way

for the operation. That is why a large German Insurance Company was not satisfied and

a new solution had to be developed. They asked for software supporting their mobile

agents while visiting clients. Key requirement was that a pool of tasks should be

automatically transmitted to the first agent available and capable of fulfilling the order.

In the previously used system a task could only be forwarded to one specific client, not

to a client group with specific requirements. A second demand was that tasks should be

retransferrable to another agent if the original task holder could not finish it within a

given time span. (For further technical details see Chapter II)

The solution should support updating the stored data of the mobile device, without

needing any active start action. So as soon as an online connection is available new

packets destined for that agent are automatically pushed up. This is achieved by using

the background software called SVSDM9 (see Chapter II.4 and [Mord05] for more

information).

8 Universal Description, Discovery, and Integration (UDDI) is a platform-independent, XML-

based registry for businesses worldwide to list themselves and their services (web services) on the

Internet. [Dust03]

9 Shared Virtual Space Distribution Manager (SVSDM) is a software creating a Virtual Space shared

between different clients and managing the distribution of the data objects. [Mord05]

Introduction Problem description

 15

SVSDM solves most of the distribution issues. It is a P2P system that in addition uses

some of the advantages of a central server to coordinate the stream of data.

The challenge was to find a solution compatible with the security scheme of a large

company and at the same time flexible enough to serve mobile agents. Let us look at a

small example to ease understanding:

Think about a supplier of beverages. The beverages are transported on big vans and

each driver has a route to follow. This information is stored on a mobile device, which

was synchronized at the starting point of the tour. It is important that the data is not

only stored on that device (through a message passing system) as it can happen that this

device may break down or be stolen. If SVSDM is used, the data that was copied onto

that device are marked as in use by the client on the information provider. When a

different client tries to fetch this information during an authentication with the same

IDentification (ID), the system will grant all rights to this data as well. There also may

be a defined timeout. After its expiration all other users can get access to that data again.

Introduction Outline

 16

I.6 Outline

Chapter II Technical background gives an introduction to web services, to the workflow

topic, to SVSDM and why middleware is very important nowadays.

Chapter III Use Case for an Insurance Company, Chapter IV Use Case for a Mobile

Medical Service, and Chapter V Other Use Cases are the main parts of this thesis and

describe the use cases starting from the description of the basic situation, the

requirements, leading to the solution of the problem by using SVSDM, and showing the

benefits (system independence, recoverability, short development times, less source

code, transactions, minimal network traffic, offline mode, monitoring) that arise using

this application.

Chapter VI Evaluation will assess the outcome and give some future aspects.

Chapter VII Conclusion gives a summary of the work.

Technical background Web Services

 17

II Technical background

This chapter highlights the technical background. The technology important to this

thesis is presented and its features and alternative solutions are subsumed.

First Web Services are described, as they are a very new development making module-

based software development possible. Afterwards a Business Process Execution

Language (BPEL) is introduced. This language is a workflow description language using

the Web Service approach. Finally an introduction to middleware systems is given,

starting with the historical development and describing some important features

provided. The chapter finishes with a detailed essay on the SVSDM, a Virtual Space

Manager (VSM) based distribution manager.

II.1 Web Services

A web service is a new kind of web application [Dust03]. The idea behind it is easy to

understand. A web service is part of a full system split into modules. Each module may

be deployed on a different computer. The full function is available when many

computers collaborate. The key idea of packing is that special services may be supplied

by different providers, or, alternatively, that one service may be used by different

requesters. The services may also be able to search for necessary functions over the

internet. Therefore a so called UDDI – Service was conceived which stores the WSDL10

File – a description of the Web Service in a special language. It defines the layout of the

10 Web Services Description Language (WSDL) is an XML format published for describing Web

services. [Dust03]

Technical background Web Services

messages that are exchanged through SOAP11 over the Internet. SOAP defines an

XML12 messaging protocol. The UDDI – Service is used to make an enquiry for a

special service. If an answer is given the web service will contact the service found in

this way that will fulfill the needs.

Figure 1: Web Service [www01]

For Example: The task is the planning of a business travel to London and therefore to

create a web service that should find the cheapest way to get and stay there. The web

service will first try to find out a route of how to go there contacting different airlines,

bus and perhaps also a train services. The web service may first search for all these

travel facilities and then will try to find out the price for the tour. Then it will search for

a hotel. For this part some preferences might be specified, such as that the place should

be near to the conference hall. The web service will automatically store all routes found

and evaluate the prices. The cheapest and best fitting route will then be presented to the

user.

11 Simple Object Access Protocol (SOAP) is a standard for exchanging XML-based messages over a

computer network, normally using HTTP. [Dust03]

12 The eXtensible Markup Language (XML) is a simplified subset of SGML (Standard Generalized

Markup Language). XML enables authors to define their own tags. XML is a formal specification of

the World Wide Web Consortium. [Stuc05]

 18

Technical background BPEL

 19

II.2 BPEL

Business Process Execution Language (BPEL) [Andr03][Dust03][Juri05][www06] is an

extension to web services. This language is XML based and was created 2003 by a

cooperation of big world wide acting companies (IBM, Microsoft, BEA-Systems,

SAP AG, Siebel Systems and others). The intention behind creating such a language was

to find a modern business process description language. The concept of this language is

mainly a unification of the WSFL (the Flow Language of IBM) that is based on the

concept of direct graphs and XLANG (by Microsoft), a block-structured language.

BPEL is a combination of these two languages and offers a rich vocabulary for the

depiction of business processes. BPEL can be used as a description language of a

business flow (abstract business protocol) as well as a programming language for web

services (executable process).

With BPEL a large number of web services can be organized to cooperate and follow a

greater target. The idea is to split the work task into small parts (services) which are

implemented independently. Later they are put together with the help of a workflow.

This makes it possible that frequently used services (for example: from different

workflows or different companies) may be provided by one single service provider.

A web service may even be a manual task, for example filling in a form or asking a

worker to question someone. BPEL allows describing a very complicated business case

and enables programming in the large (having complicated tasks split into modules).

Figure 2: BPEL Process [www06]

Technical background BPEL

 20

The BPEL process (see Figure 2, the red cloud) is a flow-chart-like expression of an

algorithm. Each step is called an activity. See Table 1 for a collection of primitive activities.

These activities can be combined to a more complex algorithm using any of the

provided structure activities (see Table 2).

Tag Meaning

<invoke> invoking an operation on some web service

<receive> receiving an invocation by someone externally

<reply> replying to an input/output operation (synchronous)

<wait> waiting for some time

<assign> assigning a value or copy data to a variable

<throw> throwing an error, indicating that something went

wrong

<terminate> terminating the entire service instance

<empty> doing nothing

Table 1: BPEL primitive activities

Tag Meaning

<sequence> defining an ordered sequence of steps

<flow> indicating that a collection of steps may be executed in

parallel

<switch> case-switching for implementing branches

<while> defining a loop

<pick> executing one of several alternative paths

Table 2: BPEL structure activities

Technical background BPEL

Each BPEL process has to define partner links (<partnerLink>) and to declare

variables (<variable>). A partner link specifies a partner that interacts with the BPEL

process. Each partner link has a specific partnerLinkType that characterizes it and

one ore two of the following attributes:

• myRole: the role of this business process

• partnerRole: the role of the partner

Variables in BPEL processes are used to store, reformat, and transform messages.

Usually there will be a variable for every message sent to or received from partners.

Example 1: Example for an empty BPEL Process

For an easier understanding an oversimplified business process [www10] for employees

travel arrangements is shown that illustrates how the activities are used. Example 1 can

be referred to as an empty BPEL process. In the following example it is sown how the

different sections are filled in (see Example 2 for a more detailed example). The client

(employee) invokes the business process, specifying the name of the employee, the

destination, the departure date, and the return date. Action <receive> will wait for that

invocation. Then the business process will be instantiated and start gathering the travel

information. First it will check the employee’s travel status (to be able to do that an

<assign> action has to be done, copying the employee’s name to the message that will

be passed on). Assuming that there exists a web service by which such a check can be

done, action <invoke> will do that. Here it is possible to specify an input and output

variable using the synchronous invoke activity, as receiving this information might be

quick. After that there will be another <assign> activity to generate the message. This

will later be passed on to two further <invoke> activities. These will ask the web service

of two different airlines for their flight plans. These two activities may be started in

<process name="BusinessTravelProcess" [...] >
 <partnerLinks>
 <!-- The declaration of partner links -->
 </partnerLinks>
 <variables>
 <!-- The declaration of variables -->
 </variables>
 <sequence>
 <!-- The definition of the BPEL process body -->
 </sequence>
</process>

 21

Technical background BPEL

 22

parallel (using a <flow> activity). Here the asynchronous invoke activity is used and

therefore a <receive> activity has to be put after each invoke, which will wait for the

answer, as the flight companies might need some time for that. After all the information

has been collected a <switch> activity will decide to return (using <assign> activities)

the cheapest flight offer using an <invoke> back to the client.

In this example four <partnerLink> elements can be identified. The first one is the

employee, the client. The second is the check for the travel status and the last two are

airline services.

There is the need for seven <variable> elements, each storing a message, either to

send to or to receive from a partner.

The definition of the workflow (see Example 2) was described using BPEL – a

workflow description language. Each activity in the workflow has to fulfill a predefined

task. This may be implemented in any programming language using the predefined

interfaces (BPEL defines them). These tasks may be anything from a simple lookup in a

database to a difficult compilation of steps using a complicated logic. To achieve that

goal the usage of middleware software may be suggestive.

Technical background BPEL

<process name="BusinessTravelProcess" [...] >
 <!-- The declaration of partner links -->
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="trv:travelLT"
 myRole="travelService"
 partnerRole="travelServiceCustomer" />
 [...three more partnerLink definitions...]
 </partnerLinks>
 <!-- The declaration of variables -->
 <variables>
 <!-- input for this process -->
 <variable name="TravelRequest"
 messageType="trv:TravelRequestMessage" />
 [... six more variable definitions ...]
 </variables>
 <!-- The definition of the BPEL process body -->
 <sequence>
 <!-- Receive the initial request for business travel from client -->
 <receive partnerLink="client"
 portType="trv:TravelApprovalPT"
 operation="TravelApproval"
 variable="TravelRequest"
 createInstance="yes" />
 <!-- Prepare the input for the Employee Travel Status Web Service -->
 <assign>
 <copy>
 <from variable="TravelRequest" part="employee" />
 <to variable="EmployeeTravelStatusRequest" part="employee" />
 </copy>
 </assign>
 <!-- Synchronously invoke the Employee Travel Status Web Service -->
 <invoke partnerLink="employeeTravelStatus"
 portType="emp:EmployeeTravelStatusPT"
 operation="EmployeeTravelStatus"
 inputVariable="EmployeeTravelStatusRequest"
 outputVariable="EmployeeTravelStatusResponse" />
 <!-- Prepare the input for A1 and A2 -->
 [...like the preparation for the input for the Employee Travel Status...]
 <!-- Make a concurrent invocation to A1 in A2 -->
 <flow>
 <sequence>
 <!-- Async invoke of the A1 Web service and wait for the callback-->
 <invoke partnerLink="Airline1"
 portType="aln:FlightAvailabilityPT"
 operation="FlightAvailability"
 inputVariable="FlightDetails" />
 <receive partnerLink="Airline1"
 portType="aln:FlightCallbackPT"
 operation="FlightTicketCallback"
 variable="FlightResponseA1" />
 </sequence>
 <sequence>
 <!-- Async invoke of the A2 Web service and wait for the callback-->
 [...same as above with different Airline...]
 </sequence>
 </flow>
 <!-- Select the best offer and construct the TravelResponse -->
 <switch>
 <case condition="bpws:getVariableData('FlightResponseA1',
 'confirmationData','/confirmationData/Price')
 <= bpws:getVariableData('FlightResponseA2',
 'confirmationData','/confirmationData/Price')">
 <!-- Select Airline1 -->
 <assign>
 <copy>
 <from variable="FlightResponseA1" />
 <to variable="TravelResponse" />
 </copy>
 </assign>
 </case>
 <otherwise>
 <!-- Select Airline2 -->
 [...same as above with different Airline...]
 </otherwise>
 </switch>
 <!-- Make a callback to the client -->
 <invoke partnerLink="client"
 portType="trv:ClientCallbackPT"
 operation="ClientCallback"
 inputVariable="TravelResponse" />
 </sequence>
</process>
Example 2: Example for a BPEL Process (exzerpts)

 23

Technical background Middleware

 24

II.3 Middleware

Middleware is an infrastructure situated on a layer between the application and the

system software and the network layer [Mahm04][Call97]. It gives the developer an

abstracted view of the underlying layers and so offers the possibility for the application

to run on all systems that are supported by that middleware. One definition of

middleware says:

middleware is software sold to people who don’t know how to

program by people who know how to program [www03].

This definition may be interpreted in the following way: Middleware creates the

possibility to reuse parts of software, where difficult and very sophisticated solutions

(for example: very expensive technology for supporting online/offline situations) are

implemented only once and probably by a special organized team. Therefore an

application may be developed much faster as many time-consuming implementations of

fundamental functions are provided [www08]. The created program will run on many

different operating systems as the middleware provides the same interface on all

different supported systems. To achieve that, parts of the middleware have to be

developed specially on each system to support different system specific protocols. The

middleware creates a defined platform on different systems, which acts as a basis on

which application software may be developed. This software will then be available on all

systems, which are supported by the middleware used [Kühn98].

Middleware technologies have been developed and successfully introduced into fixed

networks [Vino04]. There they create a distribution transparent to both the user and the

software engineer, so that systems appear as a single computing facility [Sutt01].

However, completely hiding implementation details from the application makes it more

difficult and often creates obstacles in a mobile setting as mobile systems need to react

quickly to changes that may happen in their environment.

To overcome a possible lack of mobility this thesis is based on the SVSDM [Mord05],

which was created at the Technical University of Vienna using a technology developed

during the last 15 years. In 2004 the produced work depending on this technology was

subsumed under the SBC-Grid13 initiative. They define SBC-Grid software architecture

(see Figure 3) to consist of the following layers (see Table 3).

13 Space Based Computing - Grid (SBC-Grid) see [www07] for more information.

Technical background Middleware

Figure 3: SBC-GRID Architectures [www07]

The SVSDM (see Chapter II.4 for more information on that topic) can be classified as a

pattern as it provides reusable software for utilisation in different use cases.

Layer Purpose

Products or

Applications layer

Products and applications that make use of the other layers.

Patterns layer Open source infrastructure layer that implements reusable

software coordination design patterns.

Service layer Open source infrastructure layer that contributes to the self-

description and self-organization of the software architecture.

Kernel layer Middleware layer that is based on the space based computing

paradigm, like e.g. CORSO [Kühn94], eXtensible Virtual

Shared Memory (XVSM) [Kühn01], or JavaSpaces [Free99].

Table 3: Layers of the SBC-Grid Architecture

 25

Technical background Shared Virtual Space Distribution Manager

II.4 Shared Virtual Space Distribution Manager

 26

II.4.1 Overview

Most of the functions were developed based on the requirements of the first use case
(see Chapter III). Some more were added to make the solution universally valid, and to
enable other applications as well. The different use cases will show how to use these
functions in different scenarios. The functions listed (see Table 4) are provided by the
SVSDM. They will be described in more detail in the following paragraphs.

The first step in the implementation is to distribute data; therefore one needs an import
and an export functionality. These two functions are the interfaces to the software that
was developed on top of the SVSDM. Looking at SVSDM this way one can call it
middleware software, because it manages the network traffic and coordinates the
communication for the overlying application software. SVSDM was implemented using
Java, which makes it more easily portable to different platforms, as a Java
implementation exists for nearly all available platforms. It also supports some features,
as pack and unpack and to automatically start a system call on the destination system. In
addition, the possibility exists to return the answer from that call and return it to the
caller. Another function that was built into SVSDM is the Monitor/Display. This provides
a way of depicting what happens within the system. Every function call is logged.
Therefore it is possible to track every work package from the producer to the consumer
and if an answer is returned, even that. This helps the developer, while implementing
the application, since it highlights possible errors in the real life situation and helps
tracing what was done by whom.

Figure 4: SVSDM Functions

Technical background Shared Virtual Space Distribution Manager

 27

Function Managed by Description

Provide User / Client providing data, that have to be distributed

Import User / Client

SVSDM

importing data into the SVSDM

Pack User / Client

SVSDM

packing data into the SVSDM Packet, data may be

compressed and encrypted first

Distribute SVSDM distributing packets with the help of user specific

profiles if available

Check Out User / Client

SVSDM

checking out selected packages onto the target

system

Invoke User / Client

SVSDM

preparing (invoking) the target application with the

contents of the retrieved packet

Start User / Client executing (starting) the application

Return User / Client returning potential results

Terminate User / Client

SVSDM

terminating the application and storing the result

Check In User / Client

SVSDM

checking the packet into the system with the newly

added contents

Collect SVSDM collecting answer packets for specific user, specified

by a profile if available

Unpack User / Client

SVSDM

unpacking data from the SVSDM Packet, data is

uncompressed and decrypted if necessary

Export User / Client

SVSDM

exporting answer to the calling system

Receive User / Client receiving returned results from SVSDM

Monitor /

Display

User / Client

SVSDM

logging (monitoring, displaying) usage of the

system

Table 4: List of functions provided by SVSDM

Technical background Shared Virtual Space Distribution Manager

 28

II.4.2 Inside view

SVSDM is a pattern using a Shared Virtual Space that is a simulated joint memory able

to mask network failures and to handle offline situations.

An offline situation cannot be masked completely and therefore the software will

inform the application on top of it, whether the online connection is or is not available

at the given moment. To manage those situations more convenient a Global Persistent

Temporary Space (GPTS) and a Local Persistent Temporary Space (LPTS) are provided

by SVSDM. As indicated by the names these spaces are thought to be temporary only.

They are not implemented as persistent memory and not laid out for a huge amount of

data. Temporary also means that the saved data is only needed during the active

distribution process; afterwards all the data may be deleted, or stored outside of

SVSDM. The GPTS is the global storage which will be widespread over all computers

working together. The GPTS may be used by all the different clients to read, store and

share information. This is controlled by the ThreadCommunication which is

implemented at the host of the GPTS. The LPTS is to be seen as a very short time

memory, which is used to save the data that was downloaded from the GPTS for offline

usage or that will be uploaded the next time an online connection is available. The LPTS

is the tool to keep data during the offline state.

Many of these exceptional situations are solved by the underlying software called

CORSO (see [Mord05] for more information on that topic). As a very important factor

of SVSDM, the client part is equipped with a functionality enabling it to find out

whether it is connected to the global space or not. In the mobile computing scenario

offline working is very important and this is the main difference to the old hard wired

computing era. Therefore at any given time the client has to know whether a connection

exists or not and should be able to report this circumstance to the user, reporting about

the availability of the full functionality.

To make this possible, a function called LifeBeatChecker was implemented into the

clients. Its function is very simple: A shared object stored at the GPTS will be

connected with a notification to the client. It will periodically increment its value. This

increment is achieved by a service called LifeBeat running at the host of the GPTS.

The change will trigger the notification and the client will get informed of the operating

online connection. Furthermore, if the new value is different from the situation before

Technical background Shared Virtual Space Distribution Manager

 29

the change, the client also gets to know something about the functionality of the server.

A change means that everything is alright.

The main task of the SVSDM is the distribution. Therefore be reminded of the

simplified figure in the previous chapter (see Figure 4). The main functions are definitely

import and export, in other words the creation of an object and its reading out. To

explain how this works the life of an object will be shown: First the object has to be

created new Packet(content, sender, receiver). This object has to be inserted

into the LPTS, that can be achieved with the call lpts.addPacket(packet, ttl).

The time-to-live14 (TTL) tells the system how long the packet is supposed to be available

in the space. Another function takes care of the timed out packages. This is called the

ThreadGarbageCollector. This thread runs in the background and periodically

checks the TTL of all packets and automatically removes timed out packages. This

functionality is implemented into the GPTS beforehand but if needed at the LPTS it has

to be started manually (This solution was chosen because the garbage collector is not

always needed at the LPTS, e.g. at the producer side all packets are uploaded to the

GPTS not caring for the TTL, at the consumer side this looks different, as the packets

will be kept there until timed out or processed.).

At the client as well as at the central unit it seems interesting to show the users the

contents of the spaces, therefore a functionality implemented by the SVSDM is used.

This table, the NotificationBoard, always lists the contents of the LPTS or GPTS,

and if changes happen they are immediately shown on the table. This is possible

through a complex notification service that will be described a little later. The same

feature helps to keep the GPTS updated if there are any changes in the LPTSes and

naturally also in the opposite direction. When creating the table a filter may be referred

to (this may only be useful if used with the GPTS), in order to restrict the view of some

of the contents.

SVSDM uses space based computing software (CORSO) that provides a very

sophisticated transaction system. This system makes sure that functions, called in

semantic coherence, will be done as a whole or kept back at all. Two different

transactions are supported: The Top-Transaction is a data transfer that is not nested

14 time-to-live (TTL) is a limit on the period of time that a unit of data (e.g. a packet or a record) can

exist before it is discarded. [www01]

Technical background Shared Virtual Space Distribution Manager

into another one. It starts a completely new transaction scope and is autonomous so

that no other transaction is dependent on it. The second sort of transactions are the

Sub-Transactions, which are either nested in a top level one or into an existing sub

transaction.

The system also distinguishes between two types of commitments: There is a “hard”

commitment, where the transaction is executed successfully or is aborted. When using

the “soft” commitment the behaviour is the same in case of success, but in case of

failure one is able to restart the failed sub-transaction once again or react to an error

message.

Another feature is the notification system supplied by CORSO. SVSDM completely

omits the usage of polling (checking data or objects for change in a predefined timeout).

Therefore notifications are used. This procedure is more efficient than polling because it

minimises network traffic. It works quite simple: The developer creates a list of

notification items, any shared object may be added. If the value of a specific object

changes, a notification will fire and the program may react to that in a predefined way.

For example the list is filled with different objects (e.g. texts) and in case one changes

(e.g. a correction was done), this item fires. The execution will determine which type of

object was subject of change and invoke the correct process to handle it.

II.4.3 SVSDM API

This chapter will give an overview of the SVSDM API15.

II.4.3.1 Class Global Persistent Temporary Space
The object GlobalPTS is created using the following call:

15 An Applic

computer
gpts = new GlobalPTS(connection,

 name_of_packetdirectory,

 name_of_communicationdirectory,

 properties,

 create_flag)
Example 3: Call to create a new GPTS

 30

ation Programming Interface (API) is a set of definitions of the ways one piece of

software communicates with another. It is a method of achieving abstraction. [www01]

Technical background Shared Virtual Space Distribution Manager

 31

The submitted parameters represent the following:

• connection:

is the object that encapsulates the link to the underlying CORSO software.

This object specifies to which host the SVSDM should connect.

• name_of_packetdirectory:

is a freely chosen name that will be given to the shared object, which will

represent the packet directory of the GPTS, all packets will be saved here.

• name_of_communicationdirectory:

is the name for an object representing the communication directory of the

GPTS. This is used by the service called ThreatCommunication to manage

the message interaction between GPTS and clients with a LPTS.

• properties:

contains some special attributes for example the TTL_GPTS – which specifies

the time-to-live of the objects stored in the GPTS.

• create_flag:

this attribute controls the creation of the GPTS, if set to true the GPTS will

be created when not existent, if set to false the call will fail if the space is

not yet available at the host.

Furthermore the so created object gpts provides the following calls:

• gpts.startServices():

starts the services provided by the GPTS, that would be the LifeBeat,

ThreatCommunication, and ThreadGarbageCollector.

• gpts.stopServices():

stops the services mentioned above.

• gpts.addPacket(packet, ttl):

adds a packet to the GPTS, the time-to-live has to be given.

• gpts.deletePacket(oid),

gpts.deletePacket(oid, transaction):

deletes the packet specified by the Object ID (OID), either using a given

transaction or implicitly.

Technical background Shared Virtual Space Distribution Manager

• gpts.showPacketDirectoryContentOnce(table_element),

gpts.showPacketDirectoryContentOnce(name_of_packetdirectory,

 table_element),

gpts.showPacketDirectoryContentOnce(name_of_packetdirectory,

 location_of_packetdirectory,

 table_element):

lists the contents of the GPTS or a different packet directory on the

same/different host in a GUI table.

• gpts.registerUser(id, name_of_communicationdirectory):

registers a new user, identified by its ID and the name of the communication

directory.

• gpts.unregisterUser(id, name_of_communicationdirectory):

removes the given user ID from the named communication directory.

• gpts.listUsers(name_of_communicationdirectory):Hashtable,

gpts.listUsers(name_of_communicationdirectory, table_element):

is used to get the authenticated user list, either in a hash table or prepared to

be filled into a GUI table.

• gpts.resetComm():

is used to actualize the internal list of authenticated users after new registration

or deletion, the usage of this call will be avoided in a later version.

II.4.3.2 Class Local Persistent Temporary Space
The object LocalPTS is created using the following call:

The submit

• con

is

T

lpts = new LocalPTS(connection,

 name_of_lpts_packetdirectory,

 name_of_gpts_packetdirectory,

 name_of_communicationdirectory,

 location_of_gpts,

 create_flag,

 user_id)

Example 4: Call to create a new LPTS

ted parameters represent the following:

nection:

 the object that encapsulates the link to the underlying CORSO software.

his object specifies which host will be used for the LPTS.

 32

Technical background Shared Virtual Space Distribution Manager

 33

• name_of_lpts_packetdirectory:

is a freely chosen name that will be given to the shared object, which will

represent the packet directory of the LPTS. All local packets will be saved

there when there is no online connection or the packet is in use.

• name_of_gpts_packetdirectory:

is the packet directory name of the corresponding GPTS.

• name_of_communicationdirectory:

is the name for the communication object enabling the message interaction

between GPTS and LPTS.

• location_of_gpts:

this is either an IP address16 or an identifier (used in systems, where the

IP address uses to change) for a computer which hosts the GPTS.

• create_flag:

this attribute controls the creation of the LPTS, if set to true the LPTS will

be created when not existent, if set to false the call will fail if the space is

not yet available at the host.

• user_id:

is the identifier for the user who will use this LPTS.

Furthermore, the so created object lpts provides the following calls:

• lpts.checkMyCommunicationStatus():Boolean:

returns true if the LPTS that was created using a specific user ID is allowed

to communicate with the GPTS.

• lpts.GPTS2LPTS(oid, ttl):

transfers the object with the given ID to the LPTS setting the time-to-live to

the specified value.

• lpts.LPTS2GPTS(oid):

works the other way round; moves the object with the given ID to the GPTS.

16 An Internet Protocol address (IP address) is a unique number, similar in concept to a telephone

number, used by machines (usually computers) to refer to each other when sending information

through the Internet. [Rech99]

Technical background Shared Virtual Space Distribution Manager

• lpts.placeInLPTS(packet, ttl):

places a packet with the time-to-live into the LPTS.

• lpts.storeContent(oid, packet):Packet,

lpts.storeContent(oid, packet, transaction):Packet:

stores the contents of the object with the given ID either using the given

transaction or implicitly into a packet that will be returned.

• lpts.showPacketDirectoryContentOnce(table_element),

lpts.showPacketDirectoryContentOnce(name_of_packetdirectory,

 table_element),

lpts.showPacketDirectoryContentOnce(name_of_packetdirectory,

 location_of_packetdirectory,

 table_element):

lists the contents of the LPTS or a different packet directory on the same or

different host in a GUI table.

• lpts.changePacketStatus(oid, status_code),

lpts.changePacketStatus(oid, status_code, transaction):

changes the status code of the object identified by the ID either using the

given transaction or implicitly.

• lpts.deletePacket(oid),

lpts.deletePacket(oid, transaction):

deletes the packet specified by the object ID, either using a given transaction

or implicitly.

II.4.3.3 Class Notification Board
The object NotificationBoard is created using following call:

The submit

• con

en

notifboard = new NotificationBoard(connection,

 restrictions,

 table_element,

 name_of_packetdirectory,

 location_of_packetdirectory,

 show_packets_or_users)
Example 5: Call to create a new Notification Board

ted parameters represent the following:

nection:

capsulates the link to the underlying CORSO software.

 34

Technical background Shared Virtual Space Distribution Manager

• restrictions:

defines constraints on the elements that will be shown in the table.

• table_element:

this is a GUI element representing the table, where elements will be shown.

• name_of_packetdirectory:

is the packet directory name of the directory, whose contents will be shown on

the table.

• location_of_packetdirectory:

this is either an IP address or an identifier (used in systems where the

IP address frequently changes) for a computer which hosts the packet

directory.

• show_packets_or_users:

is a switch that controls which kinds of elements are shown in the table, either

packets or users. This option will be needed at the host of the GPTS, but

should be removed in later versions of SVSDM.

Furthermore the so created object notifboard provides the following functions:

• notifboard.start():

starts the notification board.

• notifboard.rebuildTable(restrictions):

rebuilds table with a new restriction object.

• notifboard.finish():

finishes the notification board.

II.4.3.4 Class Life Beat Checker
The object LifeBeatChecker is created using following call:

The submit

• con

en

lbc = new LifeBeatChecker(connection,

 status,

 properties,

 notifboard)
Example 6: Call to create a new Life Beat Checker

ted parameters represent the following:

nection:

capsulates the link to the underlying CORSO software.
 35

Technical background Shared Virtual Space Distribution Manager

• status:

element on GUI giving feedback to the user, will represent the status in two

ways: a colour box (green – online, orange – testing, red – offline) and a text

representation.

• properties:

represents the configuration file and is needed to retrieve the SVSDM specific

information.

• notifboard:

represents the notification board and is needed to initiate the rebuilding of the

table, when the connection is available again.

Furthermore, the object lbc provides the following functions:

• lbc.start():

starts the life beat checker.

• lbc.finish():

finishes the life beat checker.

II.4.3.5 Class Thread Garbage Collector
The object ThreadGarbageCollector is created using following call:

The submit

• con

en

• pro

re

in

• not

re

ta

tgc = new ThreadGarbageCollector(connection,

 properties,

 notifboard)

Example 7: Call to create a new Thread Garbage Collector

ted parameters represent the following:

nection:

capsulates the link to the underlying CORSO software.

perties:

presents the configuration file and is needed to retrieve the SVSDM specific

formation.

ifboard:

presents the notification board and is needed to retrieve the content of the

ble and to initiate the deletion of the timed out packets.

 36

Technical background Shared Virtual Space Distribution Manager

Furthermore, the so created object tgc provides the following functions:

• tgc.start():

starts the garbage collector.

• tgc.finish():

finishes the garbage collector.

II.4.3.6 Interface Packet
The interface Packet is used to create new packets for the use in the GPTS or the

LPTS, this may happen like this:

The submit

• sen

h

• rec

sp

• des

p

• dat

w

Furthermo

• pac

pac

re

• pac

pac

ge

as

packet = new Packet(sender,

 receiver,

 description,

 data)

Example 8: Call to create a new Packet

ted parameters represent the following:

der:

olds the user ID of the sender.

eiver:

ecifies the user ID of the receiver.

cription:

laceholder to transmit other information, e.g. name of the packet

a:

ill hold the data in bytes, for example a file.

re, the object packet has to implement the following functions:

ket.getSender():String,

ket.setSender(String):

ad or write sender user ID.

ket.getProfile():String,

ket.setProfile(String):

t or set the profile, that represents the receiver’s ID in the implementation

 available now.

 37

Technical background Shared Virtual Space Distribution Manager

• packet.getDescription():String,

packet.setDescription(String):

get or set description from/to the packet.

• packet.getFileInformation():String,

packet.setFileInformation(String):

read or write file information from/to the packet.

• packet.getBytes():byte[],

packet.setBytes(byte[]):

read or write bytes (e.g. from/to a file) to or from the packet.

• packet.getTitle():String,

packet.setTitle(String):

get or set title from/for the packet.

II.4.3.7 Interface Restrictions
The interface Restrictions is used to create restrictions for the notification board,

this may happen like this:

The submit

• sen

sp

• pro

se

• des

d

• sta

re

restrict = new Restrictions(sender,

 profile,

 description,

 status)
Example 9: Call to create a new Restriction

ted parameters represent the following:

der:

ecifies a restriction for the sender ID.

file:

ts a limitation for the receiver ID.

cription:

efines restrictions for the description.

tus:

stricts view to the packets of the status mentioned.

 38

Technical background Shared Virtual Space Distribution Manager

 39

Furthermore, the object restrict has to implement the following calls:

• isNotificationNeeded(oid, sender, profile, description,

 status):Boolean:

returns true for the packet if it is put into the notification list.

• isAuthorizedToBeShown(oid, sender, profile, description,

 status):Boolean:

controls whether the packet will be shown or not.

• isNotificationNeededTillEnd(oid, sender, profile, description,

 status):

returns true if a notification is needed until the end of the lifetime of this

object.

Technical background A classical solution

 40

II.5 A classical solution

The transportation system described above could also be achieved with the help of a

different technology. A database (DB) would play an important role.

In this case the DB would represent the space and keep the data of all objects. This

database would have to be installed on a single server. This is important, because a

distributed DB outstretched over all workers would lead to partial loss of data as long as

some of the workers were not online all the time.

The so called GPTS would be made available on this central server. This process needed

to be able to insert, delete, and update table entries by using the SQL17 syntax. The

logging and monitoring feature would be provided by the DB manager.

The difficult part in this setup would be the design of the worker’s process that could be

achieved by using a web browser. The server could be established by a http-server,

where all the clients might log onto in a manner secured by https (http secure –

encrypted http communication) with username and password. Subsequently the server

should create a list of the available packages according to the worker’s profile. Then the

worker might mark the packages needed for downloading. Afterwards the transmission

process would have to start, perhaps using a download manager to mask network

failures. The files would be saved into a special folder, the additional parameters like

time-to-live and execution options might be filed, too. Having completed the download,

the worker would have to post a request that the copied work packages at the DB would

be marked as selected. After being answered with a positive acknowledgment sign, the

worker might go offline to work on the packages. The answer packages might be

uploaded the same way, in sequence of authentication using https with a username and

password, followed by the upload of the files, and waiting for the acknowledgment.

Finally the packages might be marked as finished.

17 SQL (Structured English QUEry Language originally SEQUEL, later abbreviated to SQL) is the

most popular computer language used to create, modify and retrieve data from relational database

management systems. [Rech99]

Technical background A classical solution

 41

The main question in distributed computing is whether:

• wanting to develop a distribution algorithm oneself, which is time-consuming, as

it means having to deal with a lot of difficulties (some of them are mentioned in

the description of SVSDM – see Chapter II.4.2),

• or using a middleware that was developed specially for this task and supplies

many features already implemented.

A classic solution as described above might use a larger amount of data transfers

resulting in more online time and transfer volume and finally higher operating costs. It

also needs a central server, which may turn out to be the potential bottleneck.

Use Case for an Insurance Company Overview

 42

III Use Case for an Insurance Company

III.1 Overview

This real life use case was developed together with a German Insurance Company

(AMB). They were looking for a new way of overlooking their mobile agents. Until

today this task is solved using a special kind of mail system.

The company has existing predefined work tasks that should be dealt with by the mobile

workers. These tasks may be defined as workflows that then will be instantiated and

populated with specific data. Afterwards, these single packages are ready to be

distributed to a mobile worker who may work on these cases.

Examples for such a work task would be: Checking a car after damage, or proving the

correct description of a damage report after floodings, or visiting a client to work on a

new insurance application, etc. These workflows can be predefined on the system, later

be populated with the client specific data and then be posted to a work list.

This list can be read by the mobile workers who then take a suitable work package. This

step of selecting a work package in the context of a large Insurance Company has to be

supported by an automatic process. Therefore each of the predefined work packages has

to display a description of skills that are required to fulfill the job. This is supposed to

happen in a “Semantic Web” style (see Chapter III.3.5), which means some kind of a

semantic service description. In addition each worker will show a self defined profile

telling the personal preferences and a company defined profile which will somehow rate

every employee’s competence for each specific work task or group of tasks.

Use Case for an Insurance Company Overview

 43

This automatic process should make sure that these work tasks are always processed by

the most capable worker available without making this decision process too

complicated.

Such a system should be functional to a group of up to 20.000 mobile workers who are

organised in agencies. Each agency will have a supervisor, who wants to overlook the

work progress of assigned workers in a comfortable way. The agencies also have to

report back to the main Insurance Company. This reporting function should also work

automatically without any bias.

This is a vision for a complete system serving the insurance company. The functions are

quite complex as the combination of distribution with central control and semantic

assignment of the work tasks is required. For the development of a prototype this thesis

concentrates on the distribution mechanism, sharing data packets between users.

Use Case for an Insurance Company Situation

III.2 Situation

III.2.1 Actual State

This chapter will describe how the process of acquisition is solved today. It will show

the problem of the decentralized collection of work items.

Figure 5: Actual State at the Insurance Company

The decentralized mobile workers who are using a prisma [www05] client (see Figure 5

and Figure 6) collect their work in local databases, or – if more than one mobile clients

are combined to a network – they may share one database. A client may have more than

one user. After the collected work items are approved for sending, they will be put as

text files (in the GDV18-format) into the outbox. All data for a specific user will be

transferred to the corresponding inbox on the server. The connection must be built and

the transfer process has to be started manually. The prisma server has an in- and outbox

for each user.

18 Gesamtverband der Deutschen Versicherungswirtschaft (GDV) – German for Association of

German Insurance Companies. They have set a standard format for the exchange of data between

insurance companies or agencies. [www04]

 44

Use Case for an Insurance Company Situation

The data is transferred via FTP19 to the host and then it is processed. The data

connections are represented as arrows in Figure 6.

At the same time new data is sent to the client. This method of data transfer may be

used for all kinds of data, i.e. software upgrades or patches. After the transfer of data is

completed client and server will start some automatic or semi-automatic (user

interaction being necessary) task that will process the data locally.

Figure 6: Data-Flow for the Prisma System [www05]

Each client (and user) transmits its work tasks independently to the central server. The

superior agents or chiefs will be informed about the work of the agents after new

contracts are finished. They have no possibility of monitoring the tasks their dependent

agents are currently working on.

This hierarchy of agents and superiors can include up to five levels and is not necessarily

identifiable via the network topology.

19 The File Transfer Protocol (FTP) is a software standard for transferring computer files between

machines with widely different operating systems. It belongs to the application layer of the Internet

protocol suite. [Rech99]

 45

Use Case for an Insurance Company Situation

 46

III.2.2 Problems

That description gives a lot of aspects to think about. The following problems arise

from the current way of data transmission:

• First the superior agents or chiefs are not quite happy with the current state

described before. They can only find out about the work progress of their agents

after the work has been done and are not informed of who received which task

at what time. The superiors would rather like to have something like an

automatic statistic, where they can easily find out about the reliability and

sedulity of their agents.

• Another problem to be solved is that the supervisors in the description above

do not have any influence on the distribution of the work packages. The

challenge is to find a way of how to assign the work tasks to users by defining

the skills needed for the work package and allot them according to the workers’

abilities. (see Chapter III.3.5 for further discussion)

• Another problem is known under the term “synchronizing to hell”. This means

that most of the data is synchronized and copies are made between the clients

no matter whether they are really needed. Therefore it would make sense if only

just the necessary data is copied between the clients.

III.2.3 Scenario

For the IT solution of the data transmission it is of great importance that the

organizational structures will not be changed in general. The supervisors, however,

should get more information about what their agents do and when they accomplish it.

Most important is that this information flow is achieved without inhibiting the data flow

through obstacles or creating a potential bottleneck. There are two paths to reach that

aim:

The first way was tried by the insurance company. They simply changed the system so

that all agents had to report first to their supervisors. Afterwards the supervisor in

charge was obliged to forward the work tasks back to the central server.

This solution of the previously mentioned deficiencies is not preferable as the

supervisor becomes the bottleneck creating new delays in the work process.

Use Case for an Insurance Company Situation

A better method to satisfy the supervisors’ need of control is to inform them about all

the actions of the agents. This may again be done in two ways: either a message is

posted automatically to the supervisors or they have to look actively into a page of

statistics.

In these scenarios all participants in the hierarchy, which may have up to five steps, will

be informed.

Both versions could not easily be tested prior to the new development as the software

currently in use by the Insurance Company does not support automatic messaging or

statistic summaries.

Figure 7 shows the second solution. The central server still holds the database, as the

Insurance Company is very much interested in having all data collected at one point.

The agents are still autonomous, but they now automatically inform their supervisor

about all actions, which is indicated by the connecting lines. A director has been

introduced to show that different hierarchies exist. Directors respectively have to be

informed by the supervisors.

Figure 7: Scenario for the Insurance Company

 47

Use Case for an Insurance Company Situation

 48

III.2.4 Supported Fields and Persons

The following persons or fields should be supported by the application:

• Information Provider is the database of the Central Insurance Company

Work Packets may be provided from:

o Central Insurance Company

o director of the company or supervisor of an agency

o agent personally

• Information Consumer is the agent

• Agency supervisor or directory is controlling and monitoring the workflow

• Final target of all processed packages is the database of the Central Insurance

Company

Use Case for an Insurance Company Prototype

 49

III.3 Prototype

III.3.1 Requirements

The following requirements were defined in cooperation with the relevant employee of

the IT department at the insurance company and should help to fulfill the task

described.

The prototype was restricted to the distribution process only in order to show the

benefits arising of this part of the solution already. For this reason the prototype will

only transfer data packets between agents, or between agent and server.

Therefore the expenditure of programming work stayed limited until the company will

decide to follow the path further.

In the following chapters the requirements for the applications are given. Three main

programs may be distinguished. The producer part generates the packets out of the local

database that will be later stored in the central database. The consumer receives the

packets destined for it from the central database and imports them back into the local

DB. Finally the central database should work as a well known, always available data

source, where the producer saves packets and the consumer may collect them. This last

application will also implement the monitoring and statistical functions.

III.3.1.1 Producer
The producer is the part of the system which creates the data packets destined for one

specific agent. The following enumeration lists the actions as the producer program

provides them for its users.

1. Export of requested data (i.e. acquisition- or inventory data) from the local

database into a text file saved to a folder monitored by the producer. This

functionality is provided by the insurance company, and so they adapt the

export functionality of their database.

2. “Pack” (see Figure 4) the package into the LPTS. The producer program should

do this automatically, by monitoring the directory where the export process has

saved the files.

Use Case for an Insurance Company Prototype

 50

3. As soon as packets are available to be transferred from the producer’s LPTS to

the GPTS at the central database, the connection to the central server is

established automatically.

4. Transfer of the data from the LPTS to the GPTS.

5. Disconnection of the producer from the central server.

III.3.1.2 Consumer
The user logged in at the agency acts as consumer of the previously produced packages,

which have to be imported into the local database of the insurance agency. The

following enumeration lists the actions that the consumer program provides for users.

1. A connection to the central server is set up.

2. The server SVSDM application recognizes the client and transfers new data for

the user into the LPTS of the consumer application.

3. The received data is automatically or manually imported into the local database.

Therefore the insurance company provides a special import GUI.

4. Disconnection from the central server. This could happen automatically after

the end of the transmission (or after step 2, if the connection is not used any

longer for other purposes).

The consumer part may be executed on all clients for which the packet may be

addressed. (The Prototype will only be able to address one receiver. See Chapter III.3.5

for an additional addressing system.)

III.3.1.3 Additional Information
Data which are supposed to be exported at the producer are saved into a password

protected ZIP20 file. The user chooses the password during the export procedure, so it is

unknown to the system. This way was chosen, because the export procedure does not

20 The ZIP file format is the most widely-used compressed file format in the IBM PC world. The format

was designed by Phil Katz for PKZIP, and in the form now applied (PKZIP 2 format) it employs his

DEFLATE algorithm for compression. [www01]

Use Case for an Insurance Company Prototype

 51

support a different security scheme. Later it may be possible to think about a better way

of securing the data for example using PGP21.

The name of a compressed file is, for example, Q183311.zip. It specifies the contents

of the packet. Q (aQuisedaten – German for acquisition data) stands for acquisition and

the number code 183311 for the user. G (Gesamtbestand – German for inventory

data) would stay for inventory data.

The receiver is not a machine but a person who is going to work on this task.

Each computer has to register its users. The file does not reveal the sender. To solve

this problem the producer application can read the user code in the ABAKUS.INI file

(see Example 10) of the Windows22 system directory. This file represents the

configuration for the local database program. It has an entry called LAST_MRKML in the

section [Amkas], which documents the user ID as value. The central server functions as

a well known global storage.

As soon as data arrive at the target system, the import into the local database has to be

started. For that the application c:\adsystem\amkas\ImpExpGui.exe with three

space separated parameters has to be started.

1. the user ID (the numeric part of the filename, i.e. 183311)

2. a fixed 1 (the meaning of this parameter is unknown)

3. the KU (KonzernUnternehmen – German for allied company) sign.

This is a numeric value between one and six. It can be found in the

ABAKUS.INI section [Amkas] at the entry KU.

A valid call would be:

C:\adsystem\amkas\ImpExpGui.exe 183311 1 5

21 Pretty Good Privacy (PGP) is a computer program which provides cryptographic privacy and

authentication. PGP was originally designed and developed by Phil Zimmermann in 1991. [Dust03]

22 Microsoft Windows is a range of commercial operating environments (e.g. Microsoft Windows NT

or Microsoft Windows XP) for personal computers. The range was first introduced by Microsoft in

1985 and eventually has come to dominate the world personal computer market. All recent versions of

Windows are fully-fledged operating systems. [www01]

Use Case for an Insurance Company Prototype

The import application is not able for batch processing yet (This feature will probably

be available at the end of 2005). The above call will open a GUI, where the user will

have to fill-in the password and start the import procedure.

The KU-sign may be read either from the sending or receiving host, but if the

producing client reads the user ID of the sender from the configuration file, it would be

one step to get the KU-sign from there as well.

Example 10: Example for abakus.ini

[Amkas]

...

LAST_MRKML = 183311

...

KU=5

...

III.3.2 Solution

Finally the following solution (see Figure 8) was agreed upon as being the best way of

testing the infrastructure with this new kind of technology. The prototype can be

integrated into the old database system to improve the way of data exchange even for

mobile devices, which are offline most of the time. Furthermore it adds the possibility

of monitoring and statistic analysis, because of the fact that all actions are logged

centrally.

Figure 8: Proposed solution for the insurance company

 52

Use Case for an Insurance Company Prototype

 53

Steps of the solution process as depicted in Figure 8:

1. Export of data into the directory monitored by the producer. The data is saved

as a file, its name indicates what kind of data it is (Q stands for acquisition, G

stands for inventory). The numeric part explains, who is supposed to be the

receiver of the packet.

Responsible: insurance company/user.

2. Producer application listens to that directory. If new files (i.e. Q183311.zip)

are added these will automatically (in case the connection to the central server is

available) be uploaded to the GPTS. If no connection is available the packet will

be stored in the producer’s LPTS and as soon as possible then uploaded to the

GPTS.

Responsible: SVSDM application.

3. Consumer sets up a connection to the central server (to the GPTS). Then the

Consumer application is notified about new packages available.

Responsible: insurance company, SVSDM application.

4. Automatic download of all packets for user 183311 into a predefined local

directory.

Responsible: SVSDM application.

5. Start of the Import GUI (ImpExpGui.exe) with the correct parameters. The

user finishes actively the import process.

Responsible: SVSDM application, insurance company.

III.3.3 User Interface and Operation

All three user interfaces were implemented with special attention to the user’s needs.

They all have some kind of a status indication that is put into practice like a traffic light

which reports to the user the current availability of the online connection. Red means

offline, orange means testing for the connection (unsure), and green stands for online. This

kind of representation was designed to provide an easy way of understanding even for a

user unaware of the technical background.

Use Case for an Insurance Company Prototype

 54

For each program a configuration file (see Example 11, Example 14, Example 16) is

available. The following parameters are important for the functionality of the shared

virtual space and can be found in most of the three configuration files:

• svs_sitename:

defines the site name, where CORSO runs showing a symbolic name or an

IP address. The local site name can be retrieved and used for the address, too.

• svs_siteport:

the internet-stream port number of CORSO at the above defined site (for

example 5005 for the standard port of CORSO).

• svs_domain:

This parameter is only used on Windows platforms. It specifies the domain of

the system.

• svs_user:

the user-ID used to login to CORSO.

• svs_password:

the password corresponding to the user-ID.

• svs_id_LPTS:

name for the personal LPTS of the worker. This allows the set-up of different

LPTS’s for different workers on one single computer by simply changing this

ID.

• svs_id_GPTS:

name of the GPTS, must be the same on all applications that cooperate with

the same global storage.

• svs_com_GPTS:

name for the communication object which is used to coordinate the packet’s

transmission to the GPTS. This must again be the same on all applications

that cooperate on the same global storage.

• svs_ip_GPTS:

stands for the IP address or site name of the host where the GPTS is running

(for example 192.168.0.1, that must be a valid IP address, or site name).

Use Case for an Insurance Company Prototype

III.3.3.1 Producer
The Producer (Figure 9) uploads the packets via the SVSDM-middleware. The producer

program listens to a directory defined in the configuration file named producer.ini

(see Example 11).

It may be switched between two operational modi:

• One is semi-automatic (option auto_transfer is set to no, see Example 11).

It enables the view of what is happening on a graphical interface (GUI) and in

order to start the upload process the Transfer Button has to be pressed.

• The second mode is fully automatic (option auto_transfer is set to yes). If

selected, all files found in the directory will be pushed up into the GPTS. In this

second mode the GUI may be disabled as well (option gui is set to no), which

renders the distribution to the GPTS fully unobservable.

Figure 9: Producer Window

 55

Use Case for an Insurance Company Prototype

The configuration file (Example 11: Example for producer.ini) sets various parameters.

See the following list for the special parameters of the producer.ini and their

meaning:

• id:

sets the user ID, but is ignored if the abakus.ini is found, and has a valid

LAST_MRKL entry - for more information see Chapter III.3.1.3.

• ku:

sets the ku sign; - the same restrictions apply as for the id.

• directory:

location of the directory where the files of the local database are saved.

• abakus.ini:

path to the file which will hold the id and ku sign.

• gui:

controls whether the GUI is shown or not. If no is selected auto_transfer

is automatically set to yes ignoring the actual setting.

• auto_transfer:

if set to yes new packets are uploaded to the LPTS automatically and are

forwarded to the GPTS as soon as an online connection is available.

Example 11: Example for producer.ini

#producer Property File generated automatically
#Wed May 04 13:56:58 CEST 2005

id = 123433
ku = 3
directory = c\:\\transfer
abakus.ini = c\:\\WINDOWS\\abakus.ini

gui = yes

auto_transfer = no

svs_sitename = localhost
svs_siteport = nnnn
svs_domain = none
svs_user = Corso User
svs_password = none
svs_id_LPTS = lpts_packet
svs_id_GPTS = root_packet
svs_com_GPTS = root_comm
svs_ip_GPTS = xxx.xxx.xxx.xxx / hostname

 56

Use Case for an Insurance Company Prototype

Example 12 shows the pseudo code for the producer: First the connection to the

underlying CORSO software is established (see line 3). Then the LPTS is created

(lines 5-14). For the meaning of its creation parameters see Chapter II.4.3. Then the

restrictions for the notification board are created (line 16 and 17). They filter that only

packets from this user shall be visible. Afterwards the two notification boards are

created (lines 19-37), where only the one of the GPTS is visible on the GUI, because the

packets stay only for a short while in the LPTS as they are uploaded as soon as possible.

Finally the LifeBeatChecker (line 39 and 40) which visualizes the online status and

the FolderThread (line 42 and 43) which checks the import directory are started.

1 p
 2

3
4
5
6
7
8
9
10
11
12
13
14

 15
16
17

 18
19
20
21
22
23
24
25
26
27

 28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 }

roducer loc_table, glo_table, status) { (properties, list,
 //get CORSO Connection
 connection = getCorsoConnection(properties);
 //create LPTS
 try {
 lpts = new LocalPTS(connection, getProperty("svs_id_LPTS"),
 getProperty("svs_id_GPTS"),
 getProperty("svs_com_GPTS"),
 getProperty("svs_ip_GPTS"), true,
 getProperty("id"));
 }
 catch (Exception) {
 error("could not create LPTS.");
 }
 //create restrictions
 loc_restr = new Restrictions(getProperty("id"), "", "", ALL);
 glo_restr = new Restrictions(getProperty("id"), "", "", ALL);
 //create NotificationBoard for LPTS, will not be shown on GUI
 try {
 local = new NotificationBoard(connection, loc_restr, loc_table,
 getProperty("svs_id_LPTS"),
 getProperty("svs_sitename"), true);
 local.start();
 }
 catch (Exception) {
 error("could not create local NotificationBoard");
 }
 //create NotificationBoard for GPTS
 try {
 global = new NotificationBoard(connection, glo_restr, glo_table,
 getProperty("svs_id_GPTS"),
 getProperty("svs_ip_GPTS"), true);
 global.start();
 }
 catch (Exception) {
 error("could not create global NotificationBoard.");,
 }
 //create LifeBeatChecker
 lbc = new LifeBeatChecker(connection, status, properties, local);
 lbc.start();
 //create FolderThread
 ft = new FolderThread(list, properties, lpts);
 ft.start();
 //end

Example 12: Producer Code

 57

Use Case for an Insurance Company Prototype

Exam

started

direct

the us

readab

This m

insert

succes

If an e

lines 1

1 F
2
3

 4
5
6
7

 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 }

olderThread(list, properties, lpts) {
 //check which mode should be active
 nsferStatus(); auto_transfer = getAutoTra
 //check directory forever
 do {
 directory = getProperty("directory");
 list.setListData(directory);
 //if transfer is true try to transfer file
 if (transfer) {
 for (all files in directory) {
 if (file.canRead() && file.canWrite() &&
 file.getType.equals("zip")) {
 echo(file+" is read/writeable, will be pushed into space.");
 //create packet and insert it into LPTS
 try {
 packet = new Packet(sender, receiver, description, file);
 packOID = lpts.placeInLPTS(packet, ttl);
 }
 catch (Exception) {
 if (packOID != null) {
 try {
 lpts.deletePacket(packOID);
 }
 catch (Exception) {
 error("error while exception handling at LPTS insert.");
 }
 }
 showErrorMsg("error at LPTS insert.");
 continue;
 }
 //after successful insertion delete file
 file.delete();
 }
 } // for
 } // if (transfer)
 transfer = auto_transfer;
 }
 while (forever);
 //end

Example 13: FolderThread Code

ple 13 shows in pseudo code the function of the FolderThread: This thread is

 by the producer application in the background and its task is to listen to a

ory (line 7 fills a list element of the GUI with the contents of the directory to give

er feedback) and then insert all of the ZIP-files found there that are currently

le and writeable (see lines 11 and 12 for this check) into the LPTS (see line 17).

ay happen in two different modi (see above for more information). Before this

ion the packet supposed to hold this file (see line 16) has to be created. After

sful insertion of the packet into the LPTS the original file is deleted (see line 22).

xception happens the file is kept and the process is tried once more (see

9-29).

 58

Use Case for an Insurance Company Prototype

III.3.3.2 Consumer
The Consumer (Figure 10) receives packets that carry the ID of the user logged on to

the user interface. If an online connection is established all dedicated packets are

automatically downloaded to the LPTS. It may be selected either to see All, only

Finished or Selected packets on the table of the GUI.

All packets that have not been transferred to the external import program are marked as

Selected; afterwards they are marked as Finished. The finished ones are stored until

the end of the time-to-live (option TTL_LPTS is specified in milliseconds, see

Example 14).

It is again possible to switch between two modi:

• One is semi-automatic (option auto_transfer is set to no). The starting of

the import program has to be done manually (button Start selected)

• Automatic (option auto_transfer is set to yes). After that all new packets

are sent automatically to the import program. In this mode the GUI may be

disabled completely (option gui is set to no).

Figure 10: Consumer Window

 59

Use Case for an Insurance Company Prototype

The configuration file (Example 14: Example for consumer.ini) sets various

parameters. The following are specific to the consumer:

• id:

sets the user ID.

• directory:

location of a temporary directory where the files for the local database will be

saved.

• external_program:

gives the system path to the external import program which will be called to

handle the contents of the packets.

• TTL_LPTS:

time-to-live of the packets in the LPTS (storage timeout).

• gui:

controls whether the GUI is shown or not, if no is selected auto_transfer

is set automatically to yes ignoring the actual setting.

• auto_transfer:

if set to yes arriving packets will be automatically handed onto the import

program.

#consumer Property File generated automatically
#Fri May 06 10:45:16 CEST 2005

id = 123883
directory = c\:\\import
external_program = notepad
TTL_LPTS = 1000000

gui = yes
auto_transfer = no

svs_sitename = localhost
svs_siteport = nnnn
svs_domain = none
svs_user = Corso User
svs_password = none
svs_id_LPTS = lpts2_packet
svs_id_GPTS = root_packet
svs_com_GPTS = root_comm
svs ip GPTS = xxx.xxx.xxx.xxx / hostname
Example 14: Example for consumer.ini

 60

Use Case for an Insurance Company Prototype

Exam

to the

(lines

the re

packe

notific

be vis

for th

Finall

the T

delete

1 c
2
3

 4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 38
39
40

 41
42
43
44 }

onsumer(properties, loc_table, glo_table, status) {
 //get CORSO Connection
 connection = g
 //create LPTS

etCorsoConnection(properties);

 try {
 lpts = new LocalPTS(connection, getProperty("svs_id_LPTS"),
 getProperty("svs_id_GPTS"),
 getProperty("svs_com_GPTS"),
 getProperty("svs_ip_GPTS"), true,
 getProperty("id"));
 }
 catch (Exception) {
 error("could not create LPTS.");
 }
 //create restrictions
 loc_restr = new Restrictions("", getProperty("id"), "", ALL);
 glo_restr = new Restrictions("", getProperty("id"), "", ALL);
 //create NotificationBoard for LPTS
 try {
 local = new NotificationBoard(connection, loc_restr, loc_table,
 getProperty("svs_id_LPTS"),
 getProperty("svs_sitename"), true);
 local.start();
 }
 catch (Exception) {
 error("could not create local NotificationBoard.");
 }
 //create NotificationBoard for GPTS, will not be shown on GUI
 try {
 global = new NotificationBoard(connection, glo_restr, glo_table,
 getProperty("svs_id_GPTS"),
 getProperty("svs_ip_GPTS"), true);
 global.start();
 }
 catch (Exception) {
 error("could not create global NotificationBoard");
 }
 //create LifeBeatChecker
 lbc = new LifeBeatChecker(connection, status, properties, global);
 lbc.start();
 //create ThreadGarbageCollector
 tgc = new ThreadGarbageCollector(connection,properties,lpts);
 tgc.start();
 //end

Example 15: Consumer Code

ple 15 shows in pseudo code the function for the consumer: First the connection

 underlying CORSO software is established (see line 3). Then the LPTS is created

5-14) for the meanings of the creation parameters see Chapter II.4.3. Thereafter

strictions for the notification board are created (line 16 and 17). They filter the

ts in a way which makes only those from the same user visible. Afterwards the two

ation boards are created (lines 19 to 37), but only the one depicting the LPTS will

ible on the GUI, because the packets will only stay for a short while in the GPTS

ey are supposed to be downloaded to the consumer’s LPTS as soon as possible.

y the LifeBeatChecker (line 39 and 40) which visualizes the online status and

hreadGarbageCollector (line 42 and 43) which watches the packets and

s the timed out packets are started.

 61

Use Case for an Insurance Company Prototype

III.3.3.3 Monitor
The Monitor (Figure 11) – implementing the central database – is involved according to

the needs specified in the requirements. The Central Insurance Company wanted to

have the possibility of monitoring all the events in the system. For better practicability a

GUI is implemented. In the environment of the prototype the monitor also creates the

GPTS (button Start/Stop Services). It shows all registered users and allows the

supervisor to add or delete user IDs. All packets that are stored in the GPTS may be

seen and one may add or delete packets there as well. The last item was actually a

development feature, but it was kept in the system for administrator usage.

Figure 11: Monitor Window

 62

Use Case for an Insurance Company Prototype

Example 16: Example for monitor.ini

The configuration file (Example 16) sets various parameters. The following attribute is

specific to the monitor:

• TTL_GPTS:

time-to-live of the packets in the GPTS (storage timeout).

1 m
2
3

 4
5
6
7
8
9
10
11
12
13
14
15

 16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

 32
33
34
35
36
37
38
39
40 }

onitor(properties, space_tb, user_tb) {
 //if connect is pressed
 public void () {
 //get CORSO Connection

connect

 connection = getCorsoConnection(properties);
 try {
 //create GPTS
 gpts = new GlobalPTS(connection, getProperty("svs_id_GPTS"),
 getProperty("svs_com_GPTS"), properties, true);
 //create NotificationBoard for GPTS
 space = new NotificationBoard(connection,
 new Restrictions(), space_tb,
 getProperty("svs_id_GPTS"),
 getProperty("svs_sitename"), true);
 space.start();
 //create NotificationBoard for user list
 users = new NotificationBoard(connection,
 new Restrictions(), users_tb,
 getProperty("svs_com_GPTS"),
 getProperty("svs_sitename"), false);
 users.start();
 }
 catch (Exception) {
 error("could not create GlobalPTS or NotificationBoards.");
 }
 }// connect()
 //if Start Services is pressed
 public void startServices() {
 try {
 //start GPTS services
 gpts.startServices();
 //create LifeBeatChecker
 lbc = new LifeBeatChecker(connection, status, properties);
 lbc.start();
 }
 catch (Exception) {
 error("starting of services failed.");
 }
 } //startService()
 //end
#monitor Property File generated automatically
#Wed May 11 22:31:05 CEST 2005

TTL_GPTS = 1000000

svs_sitename = localhost
svs_siteport = nnnn
svs_domain = none
svs_user = Corso User
svs_password = none
svs_id_GPTS = root_packet
svs_com_GPTS = root_comm

Example 17: Monitor Code

 63

Use Case for an Insurance Company Prototype

 64

Example 17 shows in pseudo code the function for the monitor. This code is

separated into multiple functions, as the GUI gives the user the possibility of

administering different global storages (it is possible to give the host, id_GPTS – name

for the GPTS, and com_GPTS – name of the communication object – on the user

interface). Therefore there are connect() and startServices() which both have

a corresponding button on the GUI.

The first function (lines 3-26) creates the connection to the underlying CORSO

software (see line 5). Then the GPTS is created (line 8 and 9). For the meaning of the

creation parameters see Chapter II.4.3. Then two notification boards are created one of

which (lines 11-15) represents the global storage, while the second (line 17-21) shows

the users currently admitted to use the system.

The second function starts the services provided by the GPTS, that is the GPTS itself

(line 31) and again the LifeBeatChecker (line 33 and 34) which visualizes the online

status.

III.3.4 Demonstration

The mobile worker, in this use case the insurance agent (as consumer), transfers the

dedicated data package onto the wearable computer or wireless display unit. This way

enables access to the data in all locations, even at a customer’s home. After the

completion of the task the packet is returned by the insurance agent (being a producer)

to the GPTS for further processing by a different agent or the central office of the

insurance company. As this prototype is limited to the distribution of data objects only

it is difficult to understand the necessity of such mobile devices but the Use Case for a

Mobile Medical Service features a different scenario, where small and handy computing

devices are of key importance.

III.3.5 Profiles

In the requirement analysis it was shown that the distribution from one client to another

is not necessarily the best option. To solve this problem some additional assignment

features (profile management) will be discussed. In the case of the prototype the

insurance company only wanted to test the strength of the distribution algorithm, and

so complex assignment features were skipped on purpose.

Use Case for an Insurance Company Prototype

 65

III.3.5.1 Simple profile
The simplest way to achieve an assignment is to name the receiver. This way was

implemented in the Use Case for an Insurance Company described above. Each packet

is destined for one specific agent that will be named by a personal ID in the packet.

III.3.5.2 Hierarchical profile
Company organizational structures are analogous to hierarchical file systems, so the

representation of the workers’ hierarchy may be set up in a similar manner and be built

into the distribution system. This would start like a file system with a root node [/].

Work packets may then be posted to one specific worker, telling the path in the

company’s hierarchy. In the case of sending a package to a logical node representing a

higher position within the company, the packet might be forwarded to all agents

available below the given node name. Such a system could be useful for document

delivery, where documents may be relevant for a whole organizational substructure.

III.3.5.3 Complex profile (semantic web)
A possible solution to this complex profile was mentioned before. It should be possible

to use some kind of skill profile of the workers. One that may be created by the worker

or perhaps parts of it might be validated by the system (the system watches the users’

behaviour and assigns them automatically generated skills) or the head of the agency

might entitle workers to certain skills.

Each packet would then carry these predefined attributes that were set up at the packet’s

creation time. Both property files and user’s skills will have to be compared and those

users best fulfilling the demands should be able to download a certain packet. Solutions

for similar problems are sought in many semantic web [Stuc05] projects.

Use Case for a Mobile Medical Service Situation

IV Use Case for a Mobile Medical Service

IV.1 Situation

 66

IV.1.1 Actual State

To get a better idea of what this use case is about, a short introduction into the Mobile

Medical service of Vienna will be given. This service is available on weeknights from

7:00 pm to 7:00 am and on weekends and holidays the whole day long. It replaces

during this time span the general practitioner personally not available for regular

patients.

Figure 12: Workflow of Mobile Medical Service

Use Case for a Mobile Medical Service Situation

 67

Figure 12 shows how the Viennese mobile medical service works: The patients call a

physician at a central office. The doctor in the call centre is the person who may give

advice and also estimates the urgency of the case. If the patient needs to be visited by a

doctor the name, address, age, and diagnosis of the caller are recorded with the help of a

computer program. The physician may decide upon three different degrees of urgency:

normal (not a life threatening case, can wait for the doctor up to three hours), urgent

(the next free mobile team will take the visit, the team has to be at the address within

the next 30 minutes), or “blue” (very urgent, a team has to be at the address as soon as

possible. Only teams with emergency cars featuring a blue light may receive these cases).

The passing on of the collected data to the mobile teams (mostly a physician with a

paramedic) is done by non-medical personnel. They coordinate the mobile teams (in

Vienna at night up to three and by daylight – weekends or holidays – up to ten teams)

and transmit the data of the patient via voice radio or mobile phone.

Then the mobile team visits the patient. The doctor performs a physical examination of

the patient and decides on the next action (which fully lies in the responsibility of the

visiting physician). These actions vary between writing prescriptions and sending the

patient to a hospital, where further examination and treatment can be done. While doing

this the physician has to document all actions taken into a scrapbook for later reference

and the paramedic will prepare the forms (e.g. the prescription or the papers for the

hospital). Each visit also has to be documented in an assignment book, where the

patient’s name, address and insurance information are recorded. Then this

documentation has to be signed by the patient to confirm the accuracy of the data and

by the doctor confirming the medical diagnosis.

Afterwards this diagnosis is submitted back to the central office again using a mobile

telephone or voice radio. A non-medical operator adds the received information to the

database of the computer program where it is finally saved.

IV.1.2 Problems

The software used in the central office at the moment was developed to help with the

data collection process at the call centre and to support the non-medical operator

assigning the cases to the mobile teams. The data gathered in this manner is stored for

documentation reasons, but it will not be updated or corrected after the visit of the

mobile team, when only the medical diagnosis of the visiting physician is added. As the

Use Case for a Mobile Medical Service Situation

 68

data exchange is done manually it would take a lot of time to compare the sets of data in

the central office with those collected by the mobile teams.

A solution would be to use a system that is capable of letting the mobile team

manipulate the actual database so that the changes can be promoted in order to create

an error free database.

This takes us to another problematic issue:

The data of the patient is needed to be filled into a number of forms and nowadays this

is done by paramedic personnel. In the process of a medical visit the basic patient data

need to be copied several times. This does not only give the possibility of innumerable

errors but also wastes valuable time that would better be spent examining the patient or

used to finish the visit more quickly. If the mobile system were equipped with a small

printing unit, the medical care could be achieved faster and more accurately.

Another detail to be thought about is the documentation. The mobile physician is

obliged to keep a personal documentation of all cases. Nowadays this is done manually

into a scrapbook, but with a fully computerized system this could automatically be

provided more comprehensively in less time.

IV.1.3 Requirements

The scenario described above and its accompanying problems generate quite a lot of

requirements. The system could work as follows:

The caller is identified by the computer system and the data known from the telephone

company is prefilled into the form before the call is answered. The physician at the call

centre then may skip the time-consuming task of collecting these data and would just

have to check the data and correct them or submit additional information. If the caller

was unidentified or different from the patient this would have to be submitted too. This

process of data collection or correction might be skipped in case the patient would not

need to be visited by a mobile team, but the call would be logged in any case in order to

help doctors see the context should the patient call again. If a medical visit proves

inevitable, the doctor records a provisional diagnosis, requests a mobile team and finally

sets the urgency level to normal, urgent or “blue” (very urgent).

This information is transmitted to the assignment process. This could be supported by

an automatic traffic routing software, which may be seen as an addition, not

Use Case for a Mobile Medical Service Situation

 69

implemented in the first step; it may still be done manually by the non medical operator.

The system will never fully be working without human interaction as some decisions are

too critical and too difficult to be decided by a computer program. The case may be

delegated to the nearest team in charge, but also different factors like the urgency level

or the team’s workload play a role. The final aim should be to distribute the work evenly

(e.g. give all the teams the same number of cases). Finally it is also important to ensure

that the teams working for 12 hour periods get some breaks for refreshment and lunch.

After the case has been allocated to a team it is digitally transmitted. The mobile team

will confirm the assignment of the new case and drive to the given address. Then they

have to send a status code telling that they arrived at the patient. This could also happen

automatically if the mobile team’s system was equipped with GPS23 supported

navigation software. The team might look into, correct, add and work on the patient’s

data. In this case the basic personal data might also be printed onto forms needed to be

handed over to the patient for later reference and further treatment. Therefore a handy

mobile printing unit would be very helpful.

The device in use to communicate with the mobile team must comply with the

following requirements: it must be mobile, not too heavy, internally powered, robust,

always ready for action, handy, cheap, user-friendly, and equipped with an easy-to-use

small and weightless printing unit for dealing out the forms. It should produce good

printing quality and last for a long time (for such tasks a thermal printer seems

inappropriate).

The digital data transfer could be accomplished either by direct connection to the device

or by using the functionality of a connected mobile phone.

Furthermore the documentation (a protocol of the visit) could be done more quickly

and efficiently, because of the time saved using this device. This documentation will be

very much appreciated by the physicians because it will help them to reproduce easily

what happened. This documentation may be worked out with the assistance of a

computer, so complications or questions can be solved more quickly. By these means

23 The Global Positioning System (GPS) is a satellite navigation system used for determining one's

precise location and providing a highly accurate time reference almost anywhere on Earth or in Earth

orbit. [www01]

Use Case for a Mobile Medical Service Situation

 70

parts of the patient file may also be forwarded to the family doctor or the hospital the

patient has been assigned to.

Another difficulty in setting up such a program is to keep the system open to later

extensions (e.g. the use of electronic patient cards).

Use Case for a Mobile Medical Service Possible Solution

 71

IV.2 Possible Solution

In the course of analyzing the requirements it became clear that many sequences of

operations are similar to the use case of the insurance company. Yet in this use case the

different tasks have always to be executed in the same sequence. Therefore a solution is

suggested where a WorkFlow Management System (WFMS) plays the main role. With

the help of a WFMS the sequence of actions can be predefined and so the messages

with the appended data are sent to the correct client or endpoint. The workflow system

supplies the worker with all the data and tools needed for completing a job. The WFMS

will somehow also have a guiding and scheduling position, as it will make sure that the

entered cases go through all predefined steps and are not left unfinished.

IV.2.1 Workflow Management System

A Workflow Management System is a software system that defines, manages, and

executes workflows (see Chapter II.2). The execution order is defined by the workflow

logic.

For this use case a previously created WFMS (see [Riem03]) is used to coordinate the

geared order of events more easily.

That WFMS is proposed because of its simplicity and easy to construct workflows. This

leads to fast and not too complex execution. It is limited to activities that may have the

state of init (initialized), running, or done and transitions. The state init means that

the activity is waiting for the input data. Afterwards the process switches into running,

which means that the application dedicated to the activity was started or that the

dedicated task has been executed and is waiting for an answer. After all partial jobs have

been finished the activity might switch to done. There is a special activity – the “start-

activity” – which will be set to running after the instantiation of the workflow.

Transitions control the sequence of activities. They are the connectors between at least

two activities and trigger the switch from init to running. Two types of transitions

can be distinguished:

• all_of_n, the transition triggers when all input activities have been completed,

• one_of_n, means that when the first activity is finished the transition is valid.

Use Case for a Mobile Medical Service Possible Solution

 72

Using this WFMS the main workflow (see Figure 12) may be implemented by defining

an order of the tasks at the call centre and at the mobile team. The following activities

have to be taken care of:

1. start action: new call is coming in at the call centre

2. doctor takes call and new form is popping up with information filled out by the

telephone company

3. during the answer of a phone call the physician may choose one of two options:

a) no mobile doctor is needed, case is ended by medical advice via

telephone (go to 1).

b) physician decides mobile team is needed

4. case is sent to the operators or allocated automatically to a mobile team

5. case is transmitted to the mobile team, then confirmed

6. patient is reached by the mobile team:

a) examination

b) diagnosis

c) treatment

7. control of the data by the patient and the physician, signatures by both of them

8. dealing out filled forms (prescription, letter for hospital, …)

9. finished case, return final diagnosis, get ready for a new case (be ready for 5)

IV.2.2 Operation

For the overall operation the tools have to be put together. On the one hand there is the

WFMS, controlling the sequence of events, and on the other hand there is the SVSDM,

the reliable parcel service, which is used to transport data packets. Both parts put

together can form a full, functional system:

The telephone call comes in and is routed to the first free place in the call centre. The

computer application presents the form for accepting a new call to the medical

personnel. The telephone number and the data reported by the telephone company are

already filled in. The doctor now may take the call and advise the patient what to do.

Use Case for a Mobile Medical Service Possible Solution

 73

If it is necessary to send a mobile team the medical personnel will be guided by the

program (actually the specific workflow at the WFMS will do that) through the process

of gathering the information needed. If all the information is entered the doctor will set

the urgency level and finish the case.

Then the WFMS will forward the case to the next activity, to the operators, who will

assign the case to a mobile team. To reach the following activity the data packet of the

case details will then be sent using SVSDM to the mobile team as soon as they have a

connection again.

When the new case has been received the mobile team will confirm the reception and

will start the visit. After reaching the patient the physician will do the examination and

decide on the next steps together with the patient. If further treatment in the hospital is

needed the mobile computing unit will prepare the forms (with the data already known,

this may have been corrected before) and print them. Afterwards a report of the visit

with the data of the patient has to be signed by the doctor and the patient.

This report will later be forwarded to Social Security and probably a more detailed one

will be sent to the hospital and the family doctor. Finally the task will be marked as

finished and returned by the SVSDM to the central office and the mobile team will be

free to take the next assignment.

The SVSDM may play a very important role in transferring the data to and from the

mobile teams as it is specially developed for use by mobile units. Therefore it keeps the

transfer overhead minimal and contains special features which ensure that the data

arrive complete or are discarded and tried again later.

The WFMS makes sure that all the activities or actions are done in the correct order. It

may have a workflow for the complete process but also for some sub-processes that are

regularly passed in the same way (e.g. the filling out of the patient’s form by the doctor

on the telephone).

Other Use Cases Use Case for a Telecom Service Provider

 74

V Other Use Cases

V.1 Use Case for a Telecom Service Provider

V.1.1 Situation

The Austrian Telecom employs so-called Service teams which are supposed to repair

defects, or to install new products at customers’ homes. For this purpose they have to

fulfill predefined tasks. Until now these tasks have been taught through cooperation

with an experienced colleague, but as technology is evolving fast, the steps are changing

quickly. As a result, important steps may be forgotten or omitted.

Therefore a new mobile system could be created; its task would be to support the

mobile teams in all situations. It should have detailed descriptions of all usual work

tasks. In order to achieve this, a workflow such as a description of all probable tasks

should be available for reviewing. The description should be shared amongst all teams

and if someone changed a step to simplify the process or because of changing

technology, all teams should be informed about these changes.

V.1.2 Possible solution

The solution should be oriented on the use cases described before. An application with

an included WFMS like in Chapter IV would really be helpful. The workflows might be

centrally stored and maintained by specially assigned workers. The most important fact

would be that the activities and transitions might be changed by the mobile workers as

well. They would download their work tasks at the beginning of their work shift.

Therefore a description of the task with a list of all parts needed and the workflow of

the installation process would be transmitted. Before leaving for the customer the parts

Other Use Cases Use Case for a Telecom Service Provider

 75

would have to be acquired. To support this process the mobile unit might present an

electronic checklist where the part numbers would be entered. This could automatically

trigger, in case of near shortage, the order of new products at the warehouse. Then the

mobile team would be ready to leave for the first customer, and the system could

support the driver with navigation information using a GPS system. After arrival the

first task would be to compare the data about the customer, and then the actual

installation or repair process could begin. The mobile unit might present a list of steps

to be followed to reach the aim of this visit. The checklist could only show the

important steps, and if a worker needed more information the details of the selected

step would be shown. At the end of the service a final report could be printed, which

would be signed by the worker and the customer. The data of the material used and

time spent could be transmitted back to the company to be used for purposes of the

accounting department.

This solution could profit from the SVSDM as a reliable parcel service in favour of a

mobile solution. The WFMS would be used as a coordinator to make sure that all

activities are carried out, with the addition of a feature to enable the worker to alter the

workflow to the actual needs, because of a different service process. These

modifications may have different reasons, either because of technology changes or of

logical changes to have a better solution.

Other Use Cases Generic Use Case

 76

V.2 Generic Use Case

Three use cases were outlined. The first one was implemented and found acceptance in

a company. The other two were described and a possible solution suggested. This

experience now leads to the idea to point out what makes SVSDM preferable in certain

situations. The similarities of parts of these cases point out requirements and

preferences to use SVSDM in different applications:

• online as well as offline situations in the sequence of the same work case

• mobile workers cooperating with fixed wired units

• monitoring different steps of the execution

• data transfer to and from mobile units

• a process of continuous development of a data package during the execution of

the work task

All these factors are well handled by SVSDM and it is an optimal instrument to

implement such cases. But also additional tools may be added to the system to help

fulfil the predefined task as described in Chapter IV, where the functionality of the

SVSDM was enlarged by adding a WFMS to support the coordination of all the

necessary activities.

SVSDM may be used in all cases where it is important to distribute data between clients

who may stay offline for some time. SVSDM offers special features that enable the

client to work with centrally registered data even when the online access is currently not

available. Therefore the system has a new way of data representation. The data is not

saved into special folders on a predefined computer, but to a space designed to be part

of each cooperating client. The mechanism provided by the underlying Shared Virtual

Space Manager (in this case CORSO) makes sure that the latest version of each content

of the central space is replicated onto all sites. Naturally, this also works for special cases

where a central supervisor wants to be informed about all the events happening in the

system. Therefore with each data transfer a log entry will be generated, which may be

read by an administrator. This information may be used to generate detailed statistics or

depictions of the execution.

Evaluation Advantages

 77

VI Evaluation

The development of a shared virtual space is not a simple task. The aim of this work

was to prove that SVSDM was designed in a way to be practical in many different use

cases. The different potentials are shown in Chapter III Use Case for an Insurance

Company, Chapter IV Use Case for a Mobile Medical Service, and Chapter V Other

Use Cases, where a generalized applicability is outlined.

VI.1 Advantages

• System independence:

SVSDM is implemented in Java, therefore it can be used on all systems

supported by the Java Virtual Machine. The background software CORSO is

already available for UNIX, Linux, z/OS and Windows. The portability of the

program to another language is not considered of main importance, as Java is

available for nearly every system, but if really needed this will not be very

difficult as SVSDM together with CORSO solves the complexity for the

communication, replication and synchronization tasks.

• Recoverability:

The system was implemented with the usage of persistent communication

objects so that system failures may be tolerated at any given moment. The

previous state may be recovered after a system or a network failure. Special care

was taken to avoid any form of inconsistency in data objects. This is reached by

executing complex tasks using transactions. Their use ensures that the task is

carried out as a whole or kept back completely.

Evaluation Advantages

 78

• Short development times:

SVSDM presents an easy framework for the quick implementation of a solution

for the use cases mentioned above. The concept of shared virtual spaces helps a

lot when work packages or collective data have to be exchanged.

• Less source code:

Short development times imply that there is not much new source code to be

written. The useful functions of the SVSDM give a straightforward approach for

the implementation and help avoid complex functions.

• Transactions:

The use of the transaction service integrated into CORSO gives SVSDM the

possibility to assure that even complex actions put together in the semantic

coherence of one transaction are carried out as a whole or rejected completely.

CORSO supports long-running distributed and heterogeneous transactions. For

example, the process of transferring a work package from the global space to the

worker will be done in a transactional secure way to assure that the packet will

arrive at the worker as a whole or remains at the global space (if any network or

system failures have prevented the distribution) until finally transmitted.

• Minimal Network Traffic:

The traffic of data on the network is minimized by using the local SVSDM

cache, only if a packet is not available there or it is marked with eager propagation it

will be fetched from the network.

• Offline-Mode:

The offline state is supported fully transparent to all the users of the system. If

the worker is not connected, the data is available (buffered in the local space

called LPTS) as if online. The worker even might create answers or produce new

packets to be transferred back as soon as a connection will be available.

• Monitoring:

SVSDM provides a tool that can be used to overlook all the actions happening

in the system. It may be used for statistic means to provide an analysis of the

different steps occurring within the system and some information may also be

used to encourage the worker (e.g. most efficient worker, etc.).

Evaluation Future Work and Improvements

 79

VI.2 Future Work and Improvements

Some future developments were annotated while describing the use cases. Here is a list
of some upcoming ideas:

• Profile Management:
A profile management would be one of the greatest improvements. Such a
system might be extraordinarily helpful in assigning the packets to their
destination – as described in Chapter III.3.5 – however this is not a trivial task.

• Distributed File system:
While implementing the use case solution for the insurance company, the idea
was brought up whether it would be possible to implement a file system on the
basis of SVSDM [Wert04]. The quick answer would be no, because SVSDM is
not thought to act as a long time storage. But a system could be created that may
profit from the pros of SVSDM without functioning as a storage. This program
may be some kind of a synchronisation manager or a notification service for
changed data. That system might help the company to organize their data and
keep it up to date. The clients may only have to remember one entrance point,
not many shared network drives.

• Distributed Software installation:
This topic is very closely related to the file system, the data of the new software
will be stored as long as it has not been installed onto all target systems. It is
thought to be some kind of update service that keeps the software of all
connected systems up to date.

• Monitoring more flexible:
The included monitoring function might be improved and extended to a more
expressive tool. It should also offer built in statistic analysis or an interface to a
common statistic program.

• Mobile Backups:
SVSDM might also be used as a mobile backup system. The contents of selected
data folders might be copied automatically to a central storage as soon as any
changes occur. Many well known companies try to create solutions where the
data of the mobile workers are saved centrally. The task is to give a certain
security to recover all data in case of any disaster that might happen and to
prevent the loss of data (meaning lots of work).

Conclusion

 80

VII Conclusion

This thesis shows how the SVSDM – Shared Virtual Distribution Manager based on the

space based computing paradigm (Chapter II.4, page 26) may be used in realistic use

cases.

The first Use Case for an Insurance Company (Chapter III, page: 42) describes a real-

life solution developed together with a big German insurance company (AMB). They

were looking for a new way of coordinating and overlooking their mobile workers. The

prototype implemented fulfils the requirements determined together with the IT

department of the company. This prototype was presented at a meeting and is currently

under investigation by the responsible executives. It is planned to extend the presented

prototype according to the needs of the company and finally implement it as the general

data manager in the company’s distributed computing.

The Use Case for a Mobile Medical Service (Chapter IV, page: 68) and the Use Case for

a Telecom Service Provider (Chapter V.1, page: 74) describe other real-life situations

were SVSDM could be of great help. Both scenarios are depicted and a possible

solution using the SVSDM is presented. Both profit as a second tool from a WFMS –

WorkFlow Management System which is added as it will ensure that all activities are

executed in the correct order.

Finally the Generic Use Case (Chapter V.2, page: 76) tries to define generic

requirements that may present a scenario suitable for the implementation of SVSDM.

The use cases depict how the SVSDM may be used in real-life situations. Today’s

business asks for mobile solutions that enable an employee to follow the customers

instead of forcing them into the company’s offices. Therefore mobile solutions which

are able to use the central database of a business are of great importance.

Conclusion

 81

The prototype could show that this can easily be achieved by using the SVSDM.

Therefore SVSDM plays out its strength as it implements a distribution algorithm that is

capable of managing online as well as offline situations. This is achieved by the space

based computing paradigm and is supported by a transaction and notification service.

Furthermore this gives the developer an abstraction level that relieves from bothering

about topics like location migration, replication, persistence or any kind of failure.

The two other use cases which are not implemented for quite different purposes

promise to serve the users better than common solutions. The discussion of

requirements for these use cases showed the feasibility of the joint use of the SVSDM

together with a Workflow Management System.

The generic use case finally showed in general that the SVSDM framework can

minimise the complexity of mobile IT solutions by offering a widespread functionality

for today’s businesses.

Acronyms

 82

Acronyms

BPEL Business Process Execution Language

BPEL4J BPEL for Java

CERN Conseil Européen pour la Recherche Nucléaire (French for European

Organization for Nuclear Research)

CORSO CoORdinated Shared Objects

CPU Central Processing Unit

DB DataBase

FPD Flat Panel Display

FTP File Transfer Protocol

GDV Gesamtverband der Deutschen Versicherungswirtschaft (GDV),

(German for Association of German Insurance Companies)

GPS Global Positioning System

GPTS Global Persistent Temporary Storage

GUI Graphical User Interface

HMD Head Mounted Display

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

ID IDentification

Acronyms

 83

IMAP Internet Message Access Protocol

IP address Internet Protocol address

IT Information Technology

LAN Local Area Network

LPTS Local Persistent Temporary Storage

MP3 MPEG-1 Audio Layer 3, compression format for audio files

P2P Peer to Peer (Peer 2 Peer)

PCMCIA Personal Computer Memory Card International Association

PGP Pretty Good Privacy

POP3 Post Office Protocol version 3

SVSDM Shared Virtual Space Distribution Manager

TCP/IP Transmission Control Protocol/Internet Protocol is the name for the

Internet protocol suite

TTL Time-To-Live

UDDI Universal Description, Discovery, and Integration

VSM Virtual Space Manager

Web word wide Web

WFMS WorkFlow Management System

WSDL Web Service Description Language

WWW Word Wide Web

XML eXtensible Mark-up Language

http://en.wikipedia.org/wiki/MPEG-1

References Printed material

 84

References

Printed material

[Andr03] Andrews, Tony; et al.: Business Process Execution Language for Web Services

Version 1.1(BPEL4WS Specification), 5th of Mai 2003, downloaded the

20th of October 2003 from

http://www.ibm.com/developerworks/webservices/library/ws-bpel/.

[Call97] Calladine, J.: BT Middleware – software as infrastructure. BT Technol J

Vol. 15 No. 1 January 1997.

[Dust03] Dustdar, Schahram; Gall, Harald; Hauswirth Manfred: Software-

Architekturen für Verteilte Systeme. Springer-Verlag, Berlin

Heidelberg, 2003.

[Free99] Freeman, Eric; et al.: JavaSpaces™ Principles, Patterns, and Practice. Addison

Wesley, 15th of June 1999.

[Gart01] Gartner Consulting: The emergence of distributed Content Management and peer-

to-peer content networks. Engagement #010022501, Gartner Group, 2001.

[Graf03] Grafl, Andrea: Neue Trends und Standards für WebServices und Peer-to-Peer am

Beispiel von JXTA (Diplomarbeit). Technische Universität Wien, 2003.

[Juri05] Juric, Matjaz B.: A Hands-on Introduction to BPEL, downloaded the 9th of

August 2005 from

http://www.oracle.com/technology/pub/articles/matjaz_bpel1.html.

[Kanh02] Kanhäuser, Christian: Peer-to-Peer Lösungen für Pocket PCs (Diplomarbeit).

Technische Universität Wien, 2002.

http://www.ibm.com/developerworks/webservices/library/ws-bpel/

References Printed material

 85

[Kühn94] Kühn, eva: Fault-Tolerance for Communicating Multidatabase Transactions, In:
Proceedings of the 27th Hawaii International Conference on System Sciences
(HICSS), ACM, IEEE. Wailea, Maui, Hawaii, January 4 – 7 1994.

[Kühn98] Kühn, eva; Noicka, G.: Post-Client/Server Coordination Tools, In: Coordination
for Collaborative Applications. (Wolfram Cohen, Gustaf Neuman /eds.),
Springer Series Lecture Notes in Computer Science, 1998.

[Kühn01] Kühn, eva: Virtual Shared Memory for Distributed Architecture. Nova Science
Publishers, 2001.

[Mahm04] Mahmoud, Wuasay H.: Middleware for Communications. John Wiley & Sons,
Ltd, 2004.

[Mina01] Minar, Nelson; et al.: Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, February 2001.

[Mord05] Mordinyi, Richard: Shared Virtual Space Distribution Manager –SVSDM–
Design and Implementation (Diplomarbeit). Technische Universität Wien,
2005.

[Orfa99] Orfali, Robert; Harkey, Dan; Edwards Jeri: Client/Server Survival Guide,
Third Edition. John Wiley & Sons, Inc, 1999.

[Rech99] Rechenberg, Peter; Pomberger, Gustav; et al.: Informatik-Handbuch,
2., aktualisierte und erweiterte Auflage. Carl Hanser Verlag, München
Wien, 1999.

[Riem03] Riemer, Johannes: Peer-to-peer groupware mit CORSO (Diplomarbeit).
Technische Universität Wien, 2003.

[Stuc05] Stuckenschmidt, Heiner; Frank van Harmelen: Information Sharing the
Semantic Web. Springer-Verlag, Berlin Heidelberg, 2005.

[Sutt01] Sutton, Stanley M.: Middleware Selection. Springer-Verlag, Berlin
Heidelberg, 2001.

[Tane02] Tanenbaum, Andrew S.: Distributed systems. Upper Saddle River, NJ:
Prentice Hall, 2002.

[Vino04] Vinoski, Steve: An Overview of Middleware. Springer-Verlag, Berlin
Heidelberg, 2004.

[Wert04] Werthner, Georg: Entwurf und Implementierung eines verteilten, fehlertoleranten
und ausfallssicheren Dateisystems mit Corso (Diplomarbeit). Technische
Universität Wien, 2004.

References Online material

 86

Online material

[www01] Various definitions, downloaded in between April and August 2005

from http://en.wikipedia.org/wiki/.

[www02] Xybernaut Products, downloaded the 11th of April 2005 from

http://www.xybernaut.de/produkte/ger/d_ma4.shtml.

[www03] Definition of Middleware, downloaded the 12th of April 2005 from

http://philip.greenspun.com/seia/glossary/.

[www04] Definition for GDV, downloaded the 11th of April 2005 from

http://de.wikipedia.org/wiki/.

[www05] Prisma, downloaded the 13th of April 2005 from

http://www.silverstroke.de/prisma/.

[www06] Business processes: Understanding BPEL4WS, Part 1 (published the 1st of

August 2002), downloaded the 3rd of November 2003 from

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/.

[www07] Kühn, eva: SBC-GRID Initiative (last updated January 2005), downloaded

the 15th of August 2005 from

http://www.complang.tuwien.ac.at/eva/Research/researchSBC-GRID.html.

[www08] Kurschl, Werner: Space-Based versus Message-Passing Communication

A Comparison (published February 2004), downloaded the 28th of August

2005 from

http://webster.fh-hagenberg.at/staff/kurschl/pubs/TR.2004.01.SpaceBasedvsMessagePassing.pdf.

[www09] Tidwell, Doug: Web services: the Web’s next revolution (published the 29th of

November 2000), downloaded the 6th of September 2005 from

http://www.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html.

[www10] Juric, Matjaz: A Hands-on Introduction to BPEL, downloaded 9th of

August 2005 from

http://www.oracle.com/technology/pub/articles/Matjaz_bpel1.html.

[www11] Steindl, Christoph: Agile Softwareentwicklung, downloaded 14th of October

2005 from

http://www.ssw.uni-linz.ac.at/Services/Seminars/AgileSoftwareentwicklung/.

http://en.wikipedia.org/wiki/
http://www.xybernaut.de/produkte/ger/d_ma4.shtml
http://philip.greenspun.com/seia/glossary/
http://de.wikipedia.org/wiki/
http://www.silverstroke.de/prisma/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.complang.tuwien.ac.at/eva/Research/researchSBC-GRID.html
http://webster.fh-hagenberg.at/staff/kurschl/pubs/TR.2004.01.SpaceBasedvsMessagePassing.pdf
http://www.ibm.com/developerworks/edu/ws-dw-wsbasics-i.html
http://www.oracle.com/technology/pub/articles/Matjaz_bpel1.html

Lists Figures

 87

Lists

Figures

Figure 1: Web Service [www01]... 18

Figure 2: BPEL Process [www06]... 19

Figure 3: SBC-GRID Architectures [www07] ... 25

Figure 4: SVSDM Functions.. 26

Figure 5: Actual State at the Insurance Company... 44

Figure 6: Data-Flow for the Prisma System [www05].. 45

Figure 7: Scenario for the Insurance Company... 47

Figure 8: Proposed solution for the insurance company ... 52

Figure 9: Producer Window ... 55

Figure 10: Consumer Window... 59

Figure 11: Monitor Window... 62

Figure 12: Workflow of Mobile Medical Service... 66

Figure 13: Xybernaut Wearable Computer MA TC [www02]... 92

Figure 14: Xybernaut Atigo T Wireless Display with stylus [www02] 93

Figure 15: Test Environment ... 95

Lists Tables / Examples

 88

Tables

Table 1: BPEL primitive activities ... 20

Table 2: BPEL structure activities ... 20

Table 3: Layers of the SBC-Grid Architecture... 25

Table 4: List of functions provided by SVSDM .. 27

Examples

Example 1: Example for an empty BPEL Process... 21

Example 2: Example for a BPEL Process (exzerpts)... 23

Example 3: Call to create a new GPTS .. 30

Example 4: Call to create a new LPTS ... 32

Example 5: Call to create a new Notification Board .. 34

Example 6: Call to create a new Life Beat Checker.. 35

Example 7: Call to create a new Thread Garbage Collector ... 36

Example 8: Call to create a new Packet.. 37

Example 9: Call to create a new Restriction .. 38

Example 10: Example for abakus.ini .. 52

Example 11: Example for producer.ini .. 56

Example 12: Producer Code .. 57

Example 13: FolderThread Code .. 58

Example 14: Example for consumer.ini ... 60

Example 15: Consumer Code .. 61

Example 16: Example for monitor.ini .. 63

Example 17: Monitor Code.. 63

Example 18: DeployBpel Code ... 91

Appendix Integration of BPEL4J into an automated environment

 89

Appendix

Integration of BPEL4J into an automated environment

The task was to find a way to integrate the BPEL4J engine into an automated

environment without changing the BPEL4J engine itself. Automated environment

means that all manual steps of submitting a web formula are simulated by the software.

The BPEL4J engine is a Java implementation of the BPEL standard. It has to be

deployed on an application server such as an Apache Tomcat. After that the engine is

available through a web interface. In the first step a bpel-file (the specification of the

workflow, see Chapter II.2 for more information) and the related wsdl-file (the

description of the service) have to be specified. If the business process uses external

web services a second step will be necessary where one will have to define a wsdl-file for

each service. After this procedure the business process (described by the bpel-file) is

deployed and ready to be executed.

To achieve this goal the messages that are exchanged between the web browser and the

BPEL4J engine had to be analyzed in order to find out the key factors in that

communication. Then a tool had to be established to create those messages. A toolkit

provided by Apache called http-client solves that need. This is a library for Java that

provides a lot of useful functions when communicating with a web server. This library

creates the answers to the form and also parses the answers sent back from the server.

Finally an automated solution to a task that was originally intended to be accomplished

manually was created without having to change any detail in the BPEL4J engine:

Example 18 shows in pseudo code how this solution was implemented. There are two

independent functions implemented. The deployment process may in some special cases

Appendix Integration of BPEL4J into an automated environment

 90

consist of two parts. The first function deployService(zipFile) (lines 3-47)

handles the first step which is necessary for all deployments. The second function

deployServicePart2(zipFile) (lines 49-66) treats the second part of the process if

necessary.

The function deployService(zipFile) takes a ZIP-File, which holds two files

needed for the deployment process (line 4):

• a bpel-file – the actual workflow description (see Chapter II.2),

• a wsdl-file – the service description.

To start the deployment first the URL is created (line 7). It is composed from the HOST,

PORT where the deployment server runs and a special prefix (DESCRI), which is used to

connect with the service. Then the original cookies are loaded (line 8), because they will

be needed for each request sent to the server to show that they have a context. The

request page is created (lines 9-12) with the bpel-File and wsdl-File and the request is

posted (line 13) to the deployment server. Then the answer is evaluated. The first two

cases tell that there was either an open deployment process (line 16) or the workflow

had been deployed earlier (line 26). In both cases the deployment process is restarted

after either the older process was cancelled (lines 18-23) or the old workflow was

undeployed (line 31). The other two cases tell either that the entire deployment went

well (line 42) or that a second step is needed (line 34), for the uploading of some more

wsdl-Files.

The deployment of the second part will start with the construction of the URL again

(line 53). Then the files are uploaded (lines 55-59). Afterwards the request is posted

(line 62) and the deployment is finished.

Appendix Integration of BPEL4J into an automated environment

1 D
2 /
3
4

 5
6
7
8
9
10
11
12
13
14
15
16

 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

 35
36
37
38
39
40
41
42
43
44
45
46
47

/48
49
50
51
52
53

 54
55
56
57
58
59
60
61
62
63
64
65
66
67 }

eployBpel {
/ deploy a service on BPEL-Engine [first step]
 public int deployService(zipFile) throws Exception {
 ile bpelFile = new File(zipFile[1]); File wsdlFile = new File(zipFile[0]); F
 //try deploying until task is fulfilled
 while (true) {
 String targetURL = "http://" + HOST + ":" + PORT + DESCRI;
 Cookie [] cookies = getCookies();
 MultipartPostMethod filePost = new MultipartPostMethod(targetURL);
 filePost.addParameter("wsdlFile", wsdlFile.getName(), wsdlFile);
 filePost.addParameter("bpelFile", bpelFile.getName(), bpelFile);
 filePost.addParameter("step", "Continue Deployment");
 postBodyStr=client.postHtml(filePost, cookies);
 //check state of deployment
 switch(postBodyStr.getstatus())
 case("process of being") {
 //deployment open, abort old one then restart
 MultipartPostMethod cancelOpen = new MultipartPostMethod(targetURL);
 cancelOpen.addParameter("aborteddeployment", "Yes");
 cancelOpen.addParameter("flowid",getID(postBodyStr));
 client.setConnectionTimeout(5000);
 client.getState().addCookies(cookies);
 postBodyStr=client.postHtml(cancelOpen);
 continue;
 }
 case("already deployed") {
 //already deployed, undeploy old one, and restart
 // id from Process to be deleted
 String delID = getID(postBodyStr);
 //undeploy, get special undeploy page with ID of process to undeploy
 client.getHtmlFrom(UNDEPLOY+"?id="+delID);
 continue;
 }
 case("PartnerLink Identification") {
 //deployment fine, but step 2 necessary, save information for step 2
 saveID4step2 = getID(postBodyStr);
 cookies4step2 = cookies;
 // find PartnerLinks
 partnerLinks4step2 = getPartnerLinks(postBodyStr);
 return 1; //success, but step 2 is expected
 }
 case("deployed:") {
 //deployment fine, no step 2
 return 0; //success, no step 2
 }
 } //while
 } //deployService
/ deploy a service on BPEL-Engine [second step]
 public int deployServicePart2(zipFile) throws Exception {
 if (saveID4step2 == "") {
 return 1; //no step 1, was processed; or step 2 not necessary
 }
 String targetUR
 //upload files

L = "http://" + HOST + ":" + PORT + DESCRI;

 MultipartPostMethod filePost = new MultipartPostMethod(targetURL);
 for (int i=0; i<zipFile.length; i++) {
 filePost.addParameter(partnerLinks4step2[i], zipFile[i].getName(),
 zipFile[i]);
 }
 filePost.addParameter("step", "Start Serving the Process");
 filePost.addParameter("flowid",saveID4step2);
 client.postHtml(filePost, cookies4step2);
 //reset ID & cookies
 saveID4step2 = ""; cookies4step2 = null; partnerLinks4step2 = null;
 return 0; //success
 } //deployServicePart2
 //DeployBPEL

Example 18: DeployBpel Code

 91

Appendix Mobile Computing solutions by Xybernaut

Mobile Computing solutions by Xybernaut

This appendix contains a description of the mobile hardware that was used for the

demonstration of the Use Case for an Insurance Company (see Chapter III.3.4).

Xybernaut

The mobile devices used to demonstrate the work are so-called wearable computers.

They were provided by Xybernaut [www02].

Wearable computing unit MA TC

The company provided three entities of the type MA TC. This product was designed to

be carried in a specially manufactured belt.

Figure 13: Xybernaut Wearable Computer MA TC [www02]

Figure 13 shows the parts that can be used together to form a fully functional computer.

The central processing unit module – CPU module – (picture 3) can be used either with

a head mounted display – HMD – (picture 1) that has an overhead display, headphone,

and a microphone, or with a flat panel display – FPD – (picture 2) with touch screen

functionality including a speaker. The FPD was specially designed to be robust and very

bright to recognize the contents in any light condition. The last picture shows the

battery pack. The processor unit is also equipped with a battery in order to buffer some

energy to make the hot swapping of battery packs possible.

Some facts about the parts, taken from the data sheet:

CPU module:

Magnesium alloy case, Processor: Intel Pentium III 400 MHz; Shock-mounted hard

drive, 5 GB to 32 GB; Memory: 64 MB to 320 MB; 2 type II PCMCIA card slots;

ESS Maestro Pro sound card; CT 69030 video chip 4 MB, SXGA and LVDS, SVIDEO;

2 COM and 2 USB interfaces; Bi-directional EPP (parallel port); Internal battery (up to

1h operation time); Measures: 18.7 x 6.3 x 11.7 cm; Weight approx. 900 g

 92

Appendix Mobile Computing solutions by Xybernaut

Head-Mounted-Display (HMD):

Weight: approx. 470 g; 640 x 480 colour VGA monocular, left- or right-side wearable,

Over- or under-viewable; microphone and ear-piece speaker; optional integrated

miniature video camera.

Flat-Panel Display (FPD):

All-light readable displays 6.4’’ „viewable“, 640 x 480, resp. 800 x 600 colour VGA;

Activation: voice, pen and touch screen.

Batteries:

Internal NiMH battery enables hot swapping; External Lithium-ion with 4-6 hr charge,

weight 454 g, AC power adapter / battery charger with protective circuit.

Wireless display unit Atigo T

This hardware device (Figure 14) is the newest development of the company. This new

technology is a very small computer where the processing unit is integrated into a screen

that may be used with a stylus. The innovation is that a wireless LAN card is already

integrated. However a drawback might be that the memory built in is very small, so

running out of free space is possible.

Figure 14: Xybernaut Atigo T Wireless Display with stylus [www02]

 93

Appendix Mobile Computing solutions by Xybernaut

 94

Some technical details about the device, taken from the data sheet:

CPU module:

Transmeta Crusoe TM5800-1 GHz Processor, 256 MB SDRAM;

Flash Memory Options:

1 GB, 2 GB and 4 GB (with Windows XP Pro or Windows XP Embedded);

128 MB, 256 MB, 512 MB, 1 GB, 2 GB and 4 GB (with Linux Embedded, Linux);

Slots:

PC Card (CardBus Type II) CompactFlash Type II (CF-IO)

Ports:

1-USB 2.0

Audio:

Integrated 16-bitStereo Audio System, Stereo Speakers, Headset Jack (2.5 mm Cell

Phone type with Microphone and Earphone)

Batteries:

Internal Rechargeable Lithium-Ion Battery; Optional Hot-swappable Clip-On Battery;

Optional High-Capacity Battery Pack;

AC Adapter (100-240V AC, 50-60Hz)

Facts:

Operation temperature: 0º~40ºC, Humidity: 0%~90%;

Unit size H x W x D: 200 mm x 240 mm x 18 mm;

Unit weight: (840 g), including battery;

Appendix Mobile Computing solutions by Xybernaut

Modifications

To use these units in the productive environments, some changes had to be made:

The wearable computing units had to be equipped with a wireless card module, as it will

not be very useful to have a portable computer which has to be plugged onto a network

cable. Therefore wireless card modules where plugged into the PCMCIA-slots. These

modules and the wireless LAN support had to be configured manually as it was not

possible to install the latest Microsoft Windows XP operating system, which would have

had wireless networking support integrated. Because of this problem the

Microsoft Windows NT system installed had to be adjusted to work with this module.

This process enabled all units to work together and to exchange data through the

wireless interface.

Mobile work was easier using the wireless display unit, as it was already equipped with a

wireless module and the wireless support was given by the preinstalled

Microsoft Windows XP Embedded operating system.

Finally an Access Point had to be found and integrated into the test environment to be

able to connect the wireless units to the wired network.

Figure 15: Test Environment

 95

	Kurzfassung
	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Distribution
	World Wide Web
	Peer-to-peer
	Problem description
	Outline

	Technical background
	Web Services
	BPEL
	Middleware
	Shared Virtual Space Distribution Manager
	Overview
	Inside view
	SVSDM API
	Class Global Persistent Temporary Space
	Class Local Persistent Temporary Space
	Class Notification Board
	Class Life Beat Checker
	Class Thread Garbage Collector
	Interface Packet
	Interface Restrictions

	A classical solution

	Use Case for an Insurance Company
	Overview
	Situation
	Actual State
	Problems
	Scenario
	Supported Fields and Persons

	Prototype
	Requirements
	Producer
	Consumer
	Additional Information

	Solution
	User Interface and Operation
	Producer
	Consumer
	Monitor

	Demonstration
	Profiles
	Simple profile
	Hierarchical profile
	Complex profile (semantic web)

	Use Case for a Mobile Medical Service
	Situation
	Actual State
	Problems
	Requirements

	Possible Solution
	Workflow Management System
	Operation

	Other Use Cases
	Use Case for a Telecom Service Provider
	Situation
	Possible solution

	Generic Use Case

	Evaluation
	Advantages
	Future Work and Improvements

	Conclusion
	Acronyms
	References
	Printed material
	Online material

	Lists
	Figures
	Tables
	Examples

	Appendix
	Integration of BPEL4J into an automated environment
	Mobile Computing solutions by Xybernaut
	Xybernaut
	Wearable computing unit MA TC
	Wireless display unit Atigo T
	Modifications

