Georg-August-Universitat ISSN 1612-6793
A J Gottingen Nummer ZFI-BM-2007-39

Zentrum fur Informatik

Masterarbeit

im Studiengang "Angewandte Informatik"

Diameter WebAuth: An AAA-based Identity
Management Framework for Web Applications

Niklas Neumann

am Institut far

Informatik

Bachelor- und Masterarbeiten
des Zentrums fir Informatik
an der Georg-August-Universitat Goéttingen

12. November 2007

Georg-August-Universitat Gottingen
Zentrum far Informatik

LotzestraBe 16-18
37083 Gottingen
Germany

Tel. +49 (551) 39-144 14

Fax +49 (551) 39-14415

Email office@informatik.uni-goettingen.de
WWW www.informatik.uni-goettingen.de

Ich erklare hiermit, dass ich die vorliegende Arbeit selbstéandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Gottingen, den 12. November 2007

Master’s thesis

Diameter WebAuth: An AAA-based
Identity Management Framework for
Web Applications

Niklas Neumann

November 12, 2007

Supervised by Prof. Dr. Fu
Computer Networks Group
Institute for Computer Science
Georg-August-Universitat Gottingen

Abstract

Every day countless users are accessing various personal and personalized information on
the Internet, especially the World Wide Web. In order to provide each user proper access,
web applications need to be able to establish the user’s identity. Identity management is
a concept to unify and facilitate such user identification.

The objective of this thesis is to introduce and explore identity management in web
applications. First, existing identity management approaches are analyzed and evalu-
ated. Based on the results of this evaluation, a new AAA-based identity management
framework, the so-called Diameter WebAuth, is proposed. The proposal is based on the
Diameter protocol and intended for an easy deployment in web applications. By us-
ing Diameter as basis, the proposal takes advantage of existing Diameter functions and
specifications and can be seamlessly integrated into existing Diameter setups. Diame-
ter WebAuth provides features comparable to web-based identity management solutions
such as OpenlD, the Liberty Alliance project and Microsoft CardSpace.

Keywords

Identity management; digital identity; web application; AAA; network access; authenti-
cation, authorization, Diameter; WebAuth; OpenlD; Liberty Alliance; Mircrosoft Card-
Space; Kerberos.

Contents

. Introduction

1.1. Motivation and scope
1.2. Basic concepts
1.2.1. Identity management oL
1.2.2. Web-based authentication
1.2.3. Authorization
1.3. Terminology L
1.4. Thesis organization L L o

. Related work

2.1. OpenlD . . . oo
2.2. The Liberty Alliance
2.2.1. Security Assertion Markup Language (SAML)
2.3. Windows CardSpace
2.4. Kerberos
2.5, Diametero
2.5.1. The Diameter base protocol
2.5.2. Extending Diameter 0L
2.6. Comparison
2.6.1. Results
2.7, Summary

. Design

3.1. Introduction
3.1.1. Motivation and goalso
3.1.2. Usecases o i i i e e e

3.2, OVerview e e
3.2.1. Authentication and authorization
3.2.2. Accounting e
3.2.3. Identity attributes oL

14
14
16
18
19
20
21
23
25
25
29
30

Contents

3.3. Diameter WebAuth commands 43
3.3.1. AA-Request (AAR) command 44
3.3.2. AA-Answer (AAA) command L 45
3.3.3. Credit-Control-Request (CCR) command 45
3.3.4. Credit-Control-Answer (CCA) command 46
3.3.5. Identity-Information-Request (IIR) command 47
3.3.6. Identity-Information-Answer (ITA) command 48

3.4. Diameter WebAuth AVPs 48
3.4.1. Imported AVPs 49
3.4.2. Identity information AVPs 50

3.5. Privacy considerations L 55
3.5.1. Authentication 56
3.5.2. Credit-control 57
3.5.3. Identity information 0L a7

3.6. Security considerationso 57
3.6.1. Basic authentication 0oL o8
3.6.2. Digest authentication 0oL 99
3.6.3. Renegade or compromised WebAuth clients 59

3.7, Summary ... 60

. Implementation 61

4.1, OVerview oL 61

4.2. Diameter WebAuth application 61
4.2.1. Implementation basis L. 62
4.2.2. Structure 62
4.2.3. Message abstraction oL 63
4.2.4. Server implementation L. 66
4.2.5. Client implementation L. 72
4.2.6. Testsuite 73

4.3. Web application L L 75
4.3.1. MyBlog application 0oL 75
4.3.2. JSPsubpages 77
4.3.3. Helperclasses 7

4.4, SUMMALY o o e e 79

. Evaluation 81

5.1. Implementation verification 0oL 81

5.2. Design validation Lo 82

Contents

5.3.
0.4.

9.5.

5.2.1. Authentication and authorization
5.2.2. Accounting L
5.2.3. Identity attributeso o o
Performance considerations
Feature comparison L Lo
5.4.1. Results

Summary

6. Conclusion

7. Future work

Bibliography

A. Diameter WebAuth AVPs

Al
A2
A3.
A4

Diameter base protocol
Diameter Network Access Server application
HTTP-Digest authentication
Diameter credit-control application

1. Introduction

Information and services offered on the World Wide Web can be divided into two cate-
gories: those that are independent of the user who is accessing them, and those that are
not. A web site that offers personal or personalized data to its users needs to establish
their identity in order to match the proper data to the proper user. This applies to
incoming data like a post on a message board, for example, in which case the site wants
to store the name and email address of the poster along with the message. It also applies
to outgoing data like the web frontend for an email account where the web site needs to
ensure that only the person who has rightfull access to the account is allowed to use the
web frontend. In any case the web site needs to establish the identity of its user.

To determine a user’s identity the web site asks a user for his credentials. Usually this
will be a username of some sort in combination with a secret password which is used
to identify the user. After a successful identification the user can be associated with
previously supplied data like favorite topics, an address or a billing account. This data
is then used to provide the desired service. However, since those credentials and the
associated identity are biletarally negotiated between the user and the web site, they are
only valid within the scope of the particular web site. With a growing number of enlisted
services, the number of such established identities grows as well.

As a result, increased administrative efforts emerge for the users as well as for the
individual service providers. The users have to keep track of numerous identities and
need to reenter personal data each time they subscribe for a new service. To minimize
these efforts, passwords are used again with different identities which may introduce
security risks. For example, having equal passwords at different sites exposes them to
the risk of being compromised all at once. It also allows a service provider which has
access to the cleartext credentials to abuse the user’s identity at other service providers.
On the side of the service providers’ authentication services and databases have to be
setup and registration services developed. Furthermore, those databases have to be
maintained and regularly checked for old entries to keep their size within a limit. Last
but not least, an extensive sign-up process to subscribe to a service is also an entrance
barrier for a new user.

The concept of Identity Management describes the handling of such digital identities
[24, 36]. There are several approaches to enable identity management in web applica-

1. Introduction

tions like OpenlD [41], the Liberty Alliance project [45] or Microsoft CardSpace [33].
They emerged rather recently, are specifically designed for web applications and take the
problems and characteristics of a web environment into account.

On the other hand, the problem of access control has been extensively explored in
the networking field. Network access and authentication, authorization and accounting
(AAA) protocols [15] have been developed and deployed to verify and control access
privileges of network users. Those protocols are well established and mature. They are,
however, not designed for the web environment and cannot be used together with web
applications without special adaptations. Examples for network access control protocols
are Radius [50], Diameter [8] or Kerberos [37].

1.1. Motivation and scope

The thesis is motivated by the challenge to explore identity management approaches for
web applications. Noticing, that there are existing solutions from the field of network
authentication, it will work out a proposal to extend a network AAA protocol for iden-
tity management purposes in web applications. The objective is to allow existing AAA
infrastructures to support identity management operations in the application layer. This
will unify AAA infrastructures and identity management infrastructures on basis of well
established and mature protocols and services.

The goal of the thesis is to explore the possibility of adopting network-based access
protocol concepts for the purpose of providing identity management functions to web
applications. To achieve this goal, it has to effectively fulfill the requirements of identity
management in a web-based environment, using the facilities of a network authentication
protocol. The thesis will cover an analysis and comparison of existing web-based and
network-based approaches to identity management on the basis of common criteria. The
result of this analysis will then be used as basis for developing a new proposal to identity
management for web-based applications. This new proposal will be developed on top
of existing AAA structures, allowing to integrate it in already operating AAA systems
without further effort. By using existing protocols, the proposal will also take advantage
of previous work done to specify and develop those protocols. After the design, the
proposal will be validated by means of a prototype implementation.

1.2. Basic concepts

In order to understand the work detailed in the thesis, a number of basic concepts
need to be known established. The concepts of identity management and web-based

1. Introduction

authentication are, therefore, shortly introduced here.

1.2.1. Identity management

In order to offer personalized services to consumers, service providers need to be able to
distinguish their customers. Therefore the customer’s identity is established and linked
to the services provided. In the electronic world a suspects identity is usually described
with a set of attributes and an identifier. The main purpose of such an electronic identity
is to identify and recognize an individual and link it to a service specific account. The
account, in turn, holds the information that are necessary for the service provider to
render the personalized services that are expected by the client. An electronic identity
often comes down to a single identifier like a screen name or an email address which
serves as a lookup key to the rest of the personal information. A service provider can,
for example, store consumer preferences, purchase histories or shipment addresses linked
to the identity. Such additional describing information are called identity attributes
[24, 44]. In web-based environments, service providers offering their services using web
applications to customers, are also called application providers.

Identity management (IdM) describes actions that handle such identities. Examples
for such actions are to establish an identity (enrollment), supplying services to a user
and enabling features for him (provisioning), verify that a client is correctly linked to an
identity (authentication) and to destroy an identity (de-provisioning) [36]. An identity
management provider (IdMP) operates the identity management systems (IdMS) which
processes the IdM tasks for its clients. Besides the technical aspects, there are also legal
and social aspects to identity management which are not further explored in this thesis
[24, 43].

1.2.2. Web-based authentication

Web-based environments are communication infrastructures, usually networks, that use
technologies which were developed for the World Wide Web. For example, the Hypertext
Transfer Protocol (HTTP), the (Extensible) Hypertext Markup Language ((X)HTML)
or Uniform Resource Identifiers (URIs). The biggest web-environment is obviously the
World Wide Web itself; however, web technologies are also used in home, private or com-
pany networks. There are two basic alternatives for authentication in such environments:
authentication using facilities of the communication protocol (HTTP in this case) or au-
thentication using application specific methods and parameters that are exchanged using
forms. Usually an authentication is performed to identify the end user to the server.
There are also a number of (implicit) methods to authenticate a server to a user. For ex-

1. Introduction

ample, the URI which a server responds to can be used to authenticate it or information
provided in a SSL certificate that the server offers to secure communication. The follow-
ing sections, however, focus on user authentication; the concept of server authentication
will not be pursued further in this thesis.

HTTP authentication

RFC 2617 [18] specifies an authentication extension to HTTP. This extension allows
for the exchange of authentication information on the protocol level. This allows, for
example, web servers that only understand HTTP to enforce a user authentication. In
contrast to form-based authentication (see below) the user client has to support the
authentication method since it is required to process it. The user client, for example,
has to recognize a HT'TP authentication request, prompt the user for his credentials and
send them to the authenticator. Also the HT'TP authentication methods only arrange
for a username and a password as authentication credentials. Other parameters like an
authentication provider or a controll challenge, therefore, need to be guessed from the
context or encoded into the username/password tokens.

There are two authentication methods specified in RFC 2617: basic and digest access
authentication. The basic authentication transfers username and password in cleartext.
This allows for a direct comparison on the receiving end of the authentication with the
values that are present there. If the transmitted values match the ones stored before, the
authentication is successfull. The transmission, especially of the password, in cleartext,
however, bears a number of security risks (like which make basic authentication basically
insecure! [18]. A brief security consideration of HTTP basic authentication is made in
Section 3.6.1.

The second authentication method described by RFC 2617, HT'TP digest access au-
thentication, avoids to transfer the user password in cleartext. To achieve this, the digest
authentication method applies MD5 cryptographic hashing combined with nonce values
to prevent cryptoanalysis. Additionally to the authentication request, the authenticator
sends the client a nonce value. Both, client and server, then perform the digest authenti-
cation computations shown in Figure 1.1 to calculate the digest response value. The value
HAT1 contains a MDb5 hash of the username, the realm this credentials are valid for and
the user password. The authenticator can choose to store the HA1 value in the hashed
version opposite to storing the three input values in cleartext. This has the advantage
that it saves the HA1 computation every time an authentication needs to be performed.
Also, in case the authentication database is compromised, the attacker cannot get access

!Form-based authentication, however, also transmits the authentication credentials in cleartext (see
below).

1. Introduction

HA1 = MD5 (Al) = MD5 (username : realm : password)
HA2 = MD5(A2) = MD5(method : digestUri)
request — digest = MD5 (HAI : nonce : nonceCount : clientNonce : qop : HA2)

Figure 1.1.: HTTP digest access authentication formulas

to the cleartext user password. On the other hand, the realm value cannot be changed
after the hash value is calculated. The second part of the digest computation is the HA2
value which hashes the HTTP request method and URI. In the last step the HA1 and
HAZ2 value are MD5 hashed using the nonce the authenticator provided and a number of
values the client can choose to provide itself. Those additional attributes provide further
security enhancements. They include a “Quality of Protection” (qop) parameter that
specifies which of the security enhancements are required to be used, a nonce counter
that is incremented by the client, and a client generated random nonce. These enhance-
ments are designed to protect against cryptanalysis (e.g. chosen-plaintext attack) of the
digest values [18]. A brief security consideration of HI'TP digest authentication is made
in Section 3.6.2.

Form-based authentication

Most commonly applications are communicating with the clients via (X)HTML docu-
ments. Those documents can contain forms which are used to exchange authentication
credentials with the client. The credentials are transfered in cleartext using application
specific (HTTP) variables and then processed by the application. The advantages of
this approach is that the authentication procedure is completely customizable by the
web application [52]. Especially the look of the forms and the number of authentication
parameters are defined by the application. On the other hand there are no predefined
methods or templates which means that the whole authentication procedure has to be
implemented from scratch by the web application. Another disadvantage of form-based
authentication is that the authentication credentials are not encrypted per se and are
transmitted in cleartext. This means that extra steps have to be taken to secure the
credentials, like using a secure protocol to transmit them. Also possible is to employ
additional facilities like browser addons or client-side scripts to encrypt the credentials
before they are transmitted [5].

10

1. Introduction

1.2.3. Authorization

After a user has been successfully authenticated, the authenticator can apply security
restrictions on that user. For example, one user may have access to administrative
resources, while another one is only allowed access to the common pages. The process of
granting or denying access to particular resources, based on the actual access privileges
of an user (or an entity in general) is called authorization [31].

Access privileges are often grouped to make them more manageable. Such grouped
privileges are called user groups or roles. An individual user is then assigned to one
or more of such groups or roles. This authorization based on roles is called role-based
access control [42] or role-based security?. In contrast to authentication, authorization
does not imply any interaction with the user. The authorization decisions are made
by the system in the background, usually unaware by the user. In general, only the
authentication results, especially if access to a resource is denied, is communicated to
the user. Although authorization is mostly applied to authenticated users which implies
an earlier authentication, authorization can also be applied to unauthenticated (guest)
users. Also, authorization is not a mandatory facility for systems. A system can just
leave it at authenticating its users (which, however, could be understood as a kind of
authorization, since the system obviously distinguishes between authenticated and unau-
thenticated users). Authorization and authentication, therefore, closely relate to each
other but they are not mutually dependent.

1.3. Terminology

To ensure a common basis of terminology, a number of important terms used in the thesis
are defined below.

Application provider An application provider, also called service provider, operates
the web applications which are used by the end user. In terms of Diameter Web-
Auth, the web applications implement the client side of the Diameter protocol (cp.
Section 1.2.1).

Authentication Establish or confirm the identity of an end user (cp. Section 1.2.2).

Authorization Enforcing access restrictions on system resources, therefore, ensuring
that only entitled user are granted access to that resource (cp. Section 1.2.3).

’Especially Microsoft uses this term in association with their .Net framework [32].

11

1. Introduction

Basic authentication Confirming the identity of an end user by transmitting a user
name and a user password from the user client to the web application server (cp.
Section 1.2.2).

Digest authentication Confirming the identity of an end user by comparing one way
hash values that are independently generated by the user client and the web ap-
plication server based on a common nonce, the user name and the password (cp.
Section 1.2.2).

Digital identity An electronic identifier used to represent an identity. Used by appli-
cation providers to recognize an end user (cp. Section 1.2.1).

End user The person accessing web services offered by an application provider is called
end user. He accesses the web services using his user client.

Identity attribute Additional characteristics to describe features of a digital identity
(cp. Section 1.2.1).

Identity provider The identity provider offers identity services such as user authenti-
cation and authorization to its customers which usually are application providers.
Common data related to an identity is usually stored on systems operated by the
identity provider. In terms of Diameter WebAuth, the identity provider operates
the Diameter servers responsible for Diameter WebAuth operations (cp. Section
1.2.1).

User client In web-based environments, the user client is usually a web browser. It is
used by the end user to access web services.

Web application An application accessable via the World Wide Web. Also called web
service and operated by an application provider.

1.4. Thesis organization

The thesis will be organized as follows. First, existing approaches in the field of identity
management related to or applicable to web applications will be examined. An evaluation
and comparison of the existing proposals in regards to their features and abilities will be
conducted. Second, based on the results from Chapter 2, a novel proposal of network
access protocol-based identity management will be developed. The proposal is designed
to overcome shortcomings of existing solutions, close gaps that are not covered by them
and be easily deployable in existing setups. In Chapter 4 the drawn up proposal will be

12

1. Introduction

tested and verified in a prototype implementation, which includes a AAA client, a web
application and the identity management server. The thesis concludes with a discussion

of the worked out approach and an outlook and possible future steps for advancing the
work.

13

2. Related work

This chapter introduces the work related to the thesis. Since there are a lot of projects
and activities related to digital identity management, the presented work is only a se-
lection. The introduced work represents the more present activities regarding identity
management in web-based environments. Following the introduction is a comparison will
be made of the presented approaches. The comparison will serve as a basis for the design
of the identity management framework developed in the following chapters.

2.1. OpeniD

OpenlD is described as “an open, decentralized, free framework for user-centric digital
identity” [41] which is built on top of existing Internet technologies such as HT'TP, SSL
and URIs. The basic idea of OpenlID is that a person is identified by an URI' as personal
identifier which he can prove to have controll over?. Such an OpenID account can be
used to log into any site that supports OpenlD logins. Development of OpenlD was
started by Brad Fitzpatrick of LiveJournal but is now being maintained by a community
as open source software. The community gets financial and legal support by the OpenlD
Foundation [41]. Because a number of large organizations like AOL, Microsoft, Sun and
Novell are providing OpenlD support for its members, the OpenlD community claims
that there are over 160 million OpenID enabled URIs and nearly ten-thousand sites
supporting OpenlD logins [41]. The 2.0 version of the specification will among other
things support the Yadis protocol [35] increasing its coverage even further.

OpenlD only specifies how a web site finds and communicates with the identity provider
responsible for a user. How and even if the identity provider actually identifies the user
is outside the scope of the specification [47]. This makes the framework vulnerable for
phishing attacks [7, 30, 53]. On the other hand however it allows OpenID providers to
implement exceptional authentication mechanisms that are more secure than password-

!To be exact, OpenID in its current version only supports “http” and “https” URLs as identifiers
[47]. For the next version (2.0) additional the support of “Extensible Resource Identifiers” (XRIs) is
intended [54].

2More specifically, the person has controll over the data that is found at this URL.

14

2. Related work

User Client Web Applicaton

(Web Browser) (Consumer) Identity Provider

P S ——
| |

(1) Provide Identifier URL——>	Web Host
	(2 Fetch Identifier URL

< €

| <«—— (3) Redirect to Identity Provider: | |
: (4) Check ID > :
:) (5) User Authentication :
| , |
| < (6) Verify ID |
| (7) Provide D—» | |
| | (8) Check Authentication . |
| |

<«—— (9) Grant Access————— |

Figure 2.1.: OpenID login protocol flow

based logins like client certificates [21] or even more exotic approaches like image-based
authentication [64].

The protocol flow for an OpenlD login is shown in Figure 2.1. If a user tries to access
a web page that requires him to login, the web application displays a HTML form,
requesting the user to supply his OpenlD identifier. The login process is started when
the user submits his OpenlD identifier, which is a simple URL (1). The web application,
which is called consumer by the OpenlID specification [47], retrieves the document at
the indicated URL. The document is then parsed for information about the OpenlD
identity provider which is responsible for this URL (2). Now the web application knows
which identity provider is responsible for the particular user and it responds with a
HTTP redirect message to the original user request (3). The redirect message sends the
user agent to the web server of the identity provider (4). The message also includes

15

2. Related work

parameters® that specify the web site the user should be redirected back to once the
authentication is complete, the claimed identifier the user has submitted and the URL
of the web application which requested the authentication. At this point the identity
provider will authenticate the user using an arbitrary authentication method bidirectional
with the user (5). If the authentication is successfull, the identity provider sends another
HTTP redirect message to the user, delegating him back to the original web site (6).
This results in a new request for the page the user wanted to access to begin with. Only
this time it includes authentication information* from the OpenlD identity provider that
the web application can use to verify the identity of the inquiring user (7). After the
application has verified the authentication information, it allows the user access to the
requested resource (9).

The verification of user supplied authentication information can happen in two different
ways. First, the web application uses a dedicated HTTP request to the identity provider
to ask if the authentication message in question is valid (8). This option is called “dumb
mode” by the OpenlD specification. It has to occur in each authentication run but allows
the consumer web application to be stateless in regard to the OpenlD authentication
process. The second option is for the web application to establish a so called “association”
with the OpenID provider. This is done independently from authentication runs (0) and
is used to negotiate a shared secret between the identity provider and the web application.
Until the shared secret expires, it is used in subsequent authentication runs to sign and
verify authentication messages. This option called “smart mode” allows the consumer
web application to directly declare authentication identifiers supplied by the user in step
(7) as valid. Its drawback is that the web application is required to maintain those shared
secrets individually for every identity provider it wants to use this mode with.

2.2. The Liberty Alliance

The Liberty Alliance was formed in September 2001 as a business alliance with the goal
of establishing an open standard for federated identity management. Currently over 160
profit, non-profit and government organizations are members of the alliance [45]. Their
main goals are to

e “provide open standard and business guidelines for federated identity management
spanning all network devices,

3The parameters are transmitted using HTTP GET variables within the target URL of the redirect
message.
“The authentication information are included using HTTP GET variables again.

16

2. Related work

Local Account - R
‘ User: john21@spl.com Ser\{|ce
== Provider

-~ Federate Account 1
' Local Account H :
Alias: Phugool6
User: joabc@idmp.org Domain: idmp1l.org
Identity Name: Mae8imuc)
Provider 'Federate Account - -)
[\‘ Local Account)
| . . |
\ Alias: _Mae8|muc \)
\\ Domain: r:?pl.cc:m /‘ ‘ User: jdoe@sp2.com Service
Name: Phugool6 Provider
Alias: eiN5eiCa ‘ Federate Account % ‘ 2
Domain: sp2.com e
) Alias: yohneuG6
o Name.xcfne}fﬁ Domain: idmpl.org
o Name: eiN5eiCa)

Figure 2.2.: Liberty Alliance - Federated Identity Management

e provide open and secure standard for SSO with decentralized authentication and
open authorization, and

e allow consumers/businesses to maintain personal information more securely, and
on their terms” [44].

“Federated identity management” is one of the key concepts of the Alliance and de-
scribes the cooperation of multiple partners, which each maintain different identities or
different parts of identities. More descriptive this means that, for example, a user links
multiple accounts at different service providers under a common account at his identity
provider. Figure 2.2 illustrates this “federating” of accounts. The federated identity ar-
chitecture provides the benefit of single sign-on® without requiring the user’s data to be
stored centrally [44].

Another key concept is the “circle of trust” which is “a federation of service providers
and identity providers that have business relationships based on Liberty architecture
and operational agreements and with whom users can transact business in a secure and
apparently seamless environment” [44|. These trust relationships are an important at-
tribute of the Liberty Alliance concept which distinguishes it from other decentralized
authentication approaches. In OpenlD, for example, no explicit trust exists between the
service provider and the identity provider.

5In terms of the Liberty Alliance single sign-on is actually called simplified sign-on.

17

2. Related work

The Alliance has published a number of specifications about various aspects of digital
identities. They are merge in three identity frameworks:

The Liberty Identity Federation Framework (ID-FF) describes the core identity
management features like identity/account linkage, single sign-on, and simple ses-
sion management.

The Liberty Identity Web Services Framework (ID-WSF) provides the specifi-
cations for building interoperable identity services, identity attribute sharing facil-
ities, service description and discovery and associated security profiles.

The Liberty Identity Services Interface Specifications (ID-SIS) enable such in-
teroperable identity services, for instance, personal identity profile service, alert
service, calendar service and so on [44].

The Identity Federation Framework (ID-FF) which offers an approach for a single
sign-on and single logout solution with digital identities [11] is based on the Security
Assertion Markup Language (SAML). The current version 1.2 of the framework has been
submitted back into the OASIS Security Services Technical Committee as input for the
next version of SAML.

2.2.1. Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) is a “XML-based framework for com-
municating user authentication, entitlement, and attribute information”. Its purpose is
to “allow business entities to make assertions regarding the identity, attributes, and en-
titlements of a subject to other entities” [38]. SAML is maintained and developed by
the OASIS Security Services Technical Committee since January 2001. The current ver-
sion SAML V2.0 was approved as an OASIS Standard in March 2005. In the beginning
the major goals of SAML were to enable single sign-on for web users and to specify
the “exchange of authentication and authorization information in a variety of kinds of
distributed transaction” [38].

Figure 2.3 shows an example of a SAML assertion which, for example, could have been
passed from an identity provider to a service provider. It is taken from the SAML V2.0
technical overview [46] and is an assertion that could have been passed from an identity
provider to a web application. It describes a SAML 2.0 assertion that was issued by
the site “http://www.example.com” (lines 2 to 6). The site declares that the subject
“j.doe@example.com” identified by his email address (lines 7 to 12) was authenticated
using a password-protected transport mechanism® (lines 7 to 24). If the service provider

SFor example, the user provided a user name and a password during a SSL-protected browser session.

18

2. Related work

1: <saml:Assertion xmlns:saml=urn:oasis:names:tc:SAML:2.0:assertion

2: Version="2.0"

3: Issuelnstant="2005-01-31T12:00:00Z">

4: <saml:Issuer Format=urn:oasis:names:SAML:2.0:nameid-format:entity>
5: http://www.example.com

6: </saml:Issuer>

7: <saml:Subject>

8: <saml :NameID

9: Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
10: j.doe@example.com

11: </saml :NameID>

12: </saml:Subject>

13: <saml:Conditions

14: NotBefore="2005-01-31T12:00:00Z"

15: NotOnOrAfter="2005-01-31T12:10:00Z2">

16: </saml:Conditions>

17: <saml:AuthnStatement

18: AuthnInstant="2005-01-31T12:00:00Z" SessionIndex="67775277772">
19: <saml:AuthnContext>
20: <saml:AuthnContextClassRef>
21: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
22: </saml:AuthnContextClassRef>
23: </saml:AuthnContext>
24: </saml:AuthnStatement>
25: </saml:Assertion>

Figure 2.3.: SAML assertion with subject, conditions, and authentication statement

is satisfied with this assertion, it can now grant the user access and identify him as
“j.doe@example.com” without further inquiry.

2.3. Windows CardSpace

The Windows CardSpace technology was developed by Microsoft to implement an iden-
tity selector for the Microsoft Windows operating systems. An identity selector is a
mechanism to choose an identity (here an “information card”) which can be used to iden-
tify the user to a web site or a web service [33]. The identity data associated with these
identity cards are self-generated or issued by an identity provider such as a bank, an
employer or the government. In order to identify the user, the identity card contains

19

2. Related work

security tokens which are digitally signed and encrypted by the identity provider that
created the card. However, ultimately the user itself makes the decision, which data to
release to an inquiring web site [33].

Windows Vista is the first Microsoft operating system with build-in support for the
Windows CardSpace technology. However Windows CardSpace is part of the .NET
Framework 3.0 and therefore is also available for Windows XP and Windows Server 2003.
Since the specifications are made available by Microsoft, it is possible for third parties
to implement CardSpace-compatible identity selectors on other platforms and devices.
Identity providers and relying parties for CardSpace are not limited to Microsoft operat-
ing systems to begin with [34]. There are a number of projects which are implementing
different aspects of the Microsoft Windows CardSpace technology like xmldap.org [65],
Bandit [4] or the Higgins project [57].

CardSpace is a so called user-controlled identity management system [23]. The user
controls which of his personal data he wants to expose to the requesting party. It also
offers pseudonyms and aliases in form of multiple cards. An example what the identity
selection screen could look like for a user is shown in Figure 2.4. It is noteable that
the authentication technology that is present behind a card is not apparent to the user.
In fact, it typically isn’t even apparent to the CardSpace system itself. The system is
entirely agnostic about the format of the security token and, therefore, can support any
digital identity system, using any type of security token. This includes simple usernames,
X.509 certificates, Kerberos tickets, SAML tokens, or anything else [34].

The CardSpace authentication process is shown in Figure 2.5. First, the CardSpace
system requests the relying party’s’ security token requirements (1). Those requirements
include a policy which describes the requirements for security tokens the site is willing
to accept. The system then asks the user to choose from the cards that are considered
based on the policy. Once the user chose a card (2), the CardSpace system request a
token from the appropriate identity provider (3). The received token then is used to
authenticate the user to the application.

2.4. Kerberos

Kerberos is a network security protocol originally developed by the Massachusetts Insti-
tute of Technology (MIT). Meanwhile it is maintained and advanced by the Kerberos
Working Group of the Internet Engineering Task Force (IETF). The latest version of
Kerberos (V5) is specified in RFC 4120 [37]. Kerberos implements a ticket approach

"CardSpace defines the relying party as “an application that in some way relies on a digital identity.”
For the purpose of this thesis, the relying party is assumed to be a web application.

20

2. Related work

€3 hooses card o send to Overdue Medis®

(Source: Windows Vista Technical Articles - Introducing Windows CardSpace [34])

Figure 2.4.: CardSpace identity selection screen

to network authentication. After a successfull authentication against the Authentication
Service, the Kerberos client receives a Ticket-Granting-Ticket. Using this ticket it can re-
quest service specific tickets from the Ticket-Granting Server. The service specific tickets
then can be used to access the particular service. Using this ticket approach, Kerberos
supports single sign-on functionalities for all supporting services [37].

Since Kerberos needs to be supported by client and server, it is not present in common
web environments. There is some support for Kerberos as a web server authentication
back-end though [28] and a couple of projects to support Kerberos authentication in
browsers |20, 29]. In september 2007 the MIT announced the launch of the Kerberos
Consortium. With prominent founding sponsors such as Google, Stanford University,
Sun Microsystems and the University of Michigan its goal is to advance the propagation
of Kerberos. Their plans also include web authentication [59].

2.5. Diameter

The Diameter protocol is an authentication, authorization and accounting (AAA) net-
work security protocol corresponding to the “Criteria for Evaluating AAA Protocols for
Network Access” [1]|. It is the intended successor for the Radius protocol [50] which is

21

2. Related work

Identity Providers

4) Present
security token

3) Get
security
token

1) Get
security token

requirements
 Information Card 1 |

| Information Card 2 |
 Information Card 3

2) Select
desired identity
by choosing an

information
card

(Source: Windows Vista Technical Articles - Introducing Windows CardSpace [34])

Figure 2.5.: CardSpace authentication process

22

2. Related work

also an AAA protocol. RFC 3588 [8] defines the Diameter Base Protocol which needs to
be extended by specific Diameter applications in order to be applicable in the particular
usage scenario it is deployed. For example, there exist Diameter applications for Net-
work Access Servers [10], Mobile IPv4 [9], Credit-Control [22] and the Session Initiation
Protocol [19]. A Diameter application, therefore, defines an own protocol-based on the
Diameter base protocol rather than being a software application in the common sense. A
Diameter client and server both need to implement the same Diameter protocol in order
to be able to perform AAA tasks against each other.

2.5.1. The Diameter base protocol

The core of a Diameter implementation is the Diameter base protocol. It provides facil-
ities for:

e Delivery of AVPs (attribute value pairs),

e Capabilities negotiation,

Error notification,

Extensibility, through addition of new commands and AVPs,

e Basgic services necessary for applications, such as handling of user sessions or ac-
counting

and is the basis for extending the Diameter protocol through Diameter applications
[8]. The base protocol on its own only implements accounting mechanisms, any other
functionality (especially authentication and authorization) needs to implemented by such
a special application.

The base protocol defines information to be transmitted by the exchange of attribute
value pairs (AVPs). Every Diameter message consists of some header information and
a number of such AVPs. Nearly every infomation in a Diameter message exchange is
encoded in an AVP. The only exceptions are the Diameter header information like the
application ID or the command code of the current Diameter message. 2.6 shows the
format of a Diameter packet and 2.7 that of an AVP. The intended function of a message
exchange is indicated by the command code which is a numerical value in the message
header. The base protocol for example defines the command code 274 to indicate an
Abort-Session-Request or an Abort-Session-Answer depending on whether the current
message is a request or an answer [8]. Diameter commands define which AVPs are
mandatory to be included in the message exchange an how the receiving side is supposed
to process the message.

23

2. Related work

0 8 16 3
Version Message Length
Command Flags Command-Code
Application-1D

Hop-by-Hop Identifier

End-to-End Identifier

AVPs (%:{)

(Source: http://en.wikipedia.org/wiki/DIAMETER)

Figure 2.6.: Diameter packet format

0 8 16 3
AVP Code
VMPrrrrr AVP Length
Vendor-ID (optional)

Data ... =

(Source: http://en.wikipedia.org/wiki/DIAMETER)

Figure 2.7.: Diameter AVP format

24

2. Related work

2.5.2. Extending Diameter

Extensibility is a design characteristic of the Diameter protocol. The base protocol lists
a number of mechanisms to extend the Diameter protocol [§]:

e Defining new AVP values.
e Creating new AVPs.
e Creating new authentication/authorization applications.

e Creating new accounting applications.

Application authentication procedures.

It is common to combine all or multiple of the mechanisms above in order to create a
new Diameter application. Although the reuse of existing AVP values, AVPs and even
Diameter applications is strongly recommended by the base protocol specification, new
Diameter applications usually specify multiple new AVP values, AVPs and Diameter com-
mands. It is the function of the Diameter Maintenance and Extensions (DIME) working
group of the Internet Engineering Task Force (IETF) |58] to keep maintain and extend
the Diameter protocol. They also maintain the Diameter Applications Design Guide-
lines [16] which contains guidelines and suggestions on how to define a new Diameter
application.

2.6. Comparison

After the related work has been introduced, the existing approaches will be evaluated
and compared. A number of criteria will be used for the evaluation which are oriented
at the web-based environment. The criteria selection is mainly inspired by the features
promoted by the works which were introduced above.

End user authentication Identity management solutions do not necessarily specify the
authentication of the end user. It may seem strange at first, that an approach which
centers around digital identities doesn’t address the question of authenticating its users.
After all a vital aspect of an identity management system is to provide its clients with as-
surances about the identity of a suspect. However, a number of identity solutions consider
the exact protocol used to authenticate a user outside the scope of their specifications.
They focus on providing the participant with assertions about existing trust relations-
ships. The actual authentication task is delegated to the systems that subsequently are
making those assertions.

25

2. Related work

For example in OpenlD the client requesting an OpenlD authentication will only get
an assertion from the identity provider of the particular OpenlD identity that the user
belongs to him and is authenticated. What kind of authentication was used in order to
get to that assertion is outside the scope of the specification.

On the one hand this gives the authenticating parties (usually the identity manage-
ment providers) the freedom to implement secure, reliable and even exotic authentication
methods. On the other hand those systems integrity usually is bound to the strength or
weakness of the system used to authenticate the end user. Especially in identity man-
agement systems which provide single sign-on this can have severe consequences because
an attacker just needs to perfrom a single successfull authentication to get access to the
whole system.

When looking at the end user authentication mechanisms a systems specifies, the
extensibility of those mechanisms should also be evaluated. The more flexible a system
is, the more resilient it is against security risks that may arise at a later point.

Authorization Having different roles for users allows a more granulated access control.
For example, a web site may want to distinguish between normal users and administrative
users. The difference to the authentication process is that both of the user groups have
legit identities and they both pass authentication. The site just wants to apply different
access privileges depending on a certain status of the particular user. Identity manage-
ment systems that support authorization allow for a finer control over access privileges
on different levels rather than in an either all or none at all fashion.

Single sign-on/sign-out Providing single sign-on (SSO) for the end user can be con-
sidered a perk or one of the main reasons that advance identity management from the
user’s perspective. First and foremost, SSO is a convenience. The user still needs to
login and he does that with the same mechanism with or without SSO. He just doesn’t
need to do it that often anymore.

Different levels of single-sign on can be distinguished based on its automation. Fully
automated SSO system detect the login status of a user without his help. The services
accessed constantly adjust the user’s status to the system. Ounly partially automated
systems require some input from the user in order to be able to determine his status like
an identifier or a prompt to recheck the user’s status. This can be due to limitations
to the system or because of intentionally forced restrictions for performance, security or
privacy reasons. In the first case for example the system may need the user to supply
a hint about his identity (like an OpenID identifier) in order to be able to verify his
login status. In the later case the system may be designed to wait for the user to push

26

2. Related work

a button before the systems tries to assess his status. This way the system doesn’t have
to constantly query for a status update and also the user can still control whether the
system identifies him or not.

Systems that offer a single sign-on for its users usually also offer single sign-out®. One
can argue, that single sign-out is a system immanent feature of SSO systems since it
is something like the “not (single) signed-on” state. Therefore, a system that allows a
client to have a system-wide signed-on state, inevitable performs a single sign-out action
when it revokes that state. However, just like the with the SSO functions, the degree of
automation has to be considered. A user’s authentication status either can be pushed
from the system to the clients? or needs to be pulled by the clients from the system.
If the push or pull operation is only performed when a user signs-on, a single sign-out
cannot work. For example, if a client in the pull modell doesn’t update the authentication
status for its users after they signed-on, it will not notice the status change when the
user signs-out. Therefore a single sign-out does need to be specially considered in the
design of an identity management system if it should be supported.

Accounting At first sight, identity management and accounting does not go necessarily
hand in hand. Accounting was introduced in AAA systems in order to keep track of
the resource or service consumption an authorization decision entails [15]. Among other
things, the accounting records can be used to charge the end user for the services he has
enlisted or to evaluate the quality of service provided by the system. Within the scope of
web-based identity management, accounting mostly makes sense under monetary aspects.
For example, if the identity management provider also handles incurring charges for its
user.

User client support For the deployment of an identity management system it makes a
big difference whether an implementation on the end user client is required. In case of
web-based identity management systems the end user client is usually the web browser. If
a system requires special support from the user client which needs to be implemented, this
has a negative impact on its deployability. I case a user client implementation is required,
the extend and complexity of the modifications can be used to further distinguish between
the approaches.

Technologies The effort it takes to implement a system specification depends to a
great deal on the amount of different technologies and on the question how established

8 Also called single sign-off [6] or single logout [11, 46].
°In this case the web application.

27

2. Related work

those technologies are. The more different technologies are used, the more knowledge
and consideration the implementation requires. In the same manner, more established
technologies are often easier to implement than comparatively new ones. This arises
from the assumption that more knowledge, references and experts exist for the more
established technologies.

On the other hand, exactly the opposite can be the case. A new technology offers
solutions for problems that were solved very cumbersomely with other technologies in
the past. Or the new technology is particularly easy to implement. In the end, the
technologies a system employs need to be properly evaluated on their own to come to
a conclusion. However, they do reflect back on the system and permit some reasoning
about the approach.

Identity attributes A digital identity can be no more than a simple alphanumeric iden-
tifier [2]. If the identity is connected to a person, however, there are a multitude of other
attributes that describe that person. For example, a first and a last name, a birthdate or
an email address. Identity management systems can be differentiate whether they also
provide means to transport such additional identity attributes.

Maturity level Especially for security related protocols and systems a high maturity
level is an important attribute. The more work has been invested in a subject, the better
it should be understood. Problems and security risks are more likely to be found and
to be resolved in highly mature software or specifications. A high maturity grade also
reflects how well an approach is established. Maturity criteria can be, for example, the
number of working implementations, the number of revisions a specification had or the
level of standardization. The more mature a a specification is, the less likely it is to
change. Usually, mature approaches are more stable and more reliable.

Primary focus The primarily intended area of application for a system is usually re-
flected by its design. On the hand, this makes the system better suited for its purpose,
on the other it also restricts its range of application. This isn’t necessarily a bad thing.
A very specific approach can take advantages of circumstances, that a more general ap-
proach cannot without loosing exactly this generality. However, a more general approach
maybe able to generate synergy effects because it can carry out the same tasks that would
otherwise be handled by a number of different systems. Therefore the evaluation will
also consider if the evaluated work focuses on web technologies. In the end, the trade-
off between specialization and generalization has to be justified by the advantages and
disadvantages it introduces.

28

2. Related work

2.6.1. Results

Table 2.1 provides a short overview of the results of the evaluation. First of all, it is
noteable that every approach has a slightly different focus. Although they all deal with
digital identities their intended use, purpose and goals do vary. Liberty and OpenlD seem
closer together in their goals than the other approaches. A closer examination, however,
shows different motivations stand behind both approaches. OpenlD aims at providing a
convenient method for a user to create a digital identity and use it with as many web
sites as possible. The OpenlD approach is user-centric, distributed and does not include
trust as an important concept. Liberty on the other hand focusses precisely on such trust
relationships. The project is centered around assertions between web sites about their
users. The Liberty specifications therefore also cover single sign-out and differentiated
user authorization. However, compared to the OpenlD specifications, they are also much
more comprehensive and complex.

The Microsoft CardSpace technology is also considered a user-centric approach and
evolves around different identities a user owns and how he uses them to identify himself.
OpenlD and Liberty don’t cover the actual authentication process between a user and a
web site, while CardSpace is all about this process. CardSpace describes a framework to
create or obtain digital identities including related identity attributes. It leaves the user
in control to use the identity he sees fit to identify himself to web sites. Because of its
different focus, CardSpace is more a complementary technology to Liberty and OpenlD
than a competing one.

Kerberos and Diameter are both rather mature protocols (compared to the other tech-
nologies). They were designed from a network point of view without any focus on web
technologies. They are, however, intended for very similar purposes than the other iden-
tity management approaches. They are designed to authenticate and authorize users'®
and allow them access to (network) services and resources. Kerberos requires the user
client to support the protocol, while Diameter allows a service specific protocol between
the user client and the access gateway.

Besides those different focusses and origins of the discussed approaches, the results
also show that they all provide common features for identity management. They pro-
vide means for applications and users to handle digital identities for identification and
authorization purposes. The Liberty Alliance project, OpenlD and Microsoft CardSpace
are web-based approaches that emerged rather recently while Kerberos and Diameter are
network-based approaches which have been established for quite some time. Although
they are all approaches to digital identity management, their objectives do not necessar-

10Djameter is actually not limited to users but can also be used to authenticate and authorize devices
in general.

29

2. Related work

Table 2.1.: Feature comparison for identity management systems

Feature OpenlD Liberty CardSpace Kerberos Diameter(!)
Authentication no no yes yes yes(?)
Authorization no yes yes yes yes
Single sign-on/ yes/ yes/ no(®) yes/ no/

sign-out no yes no no no
Accounting no no no no yes
Requires user

client support no no yes yes no®
Technologies HTTP SAML XML 1P 1P
Identity attributes no(® yes(®) yes no no
Maturity medium medium low high high
Primary Decentralized Trust Authenti- Service Network

focus identities relations cation authori- access

(Web) (Web) (Web) zation

(1) Diameter Base Protocol [8].
(2) Authentication needs to be implemented by a Diameter application.
(3) CardSpace can be part of a SSO system though.

(9) Diameter usually uses service specific protocols between user client and Diameter client.

(5) A proposed draft is available for identity attributes in OpenID [25].

(6) Not part of the Identity Federation Framework (ID-FF) but the Identity Service Interface

Specifications (ID-SIS) [27].

ily coincide. While the Liberty Alliance provides a highly comprehensive approach to
federated identity management, OpenlD aims at a simple approach to decentralized user
identities. Windows CardSpace provides an alternative to common authentication meth-
ods centered around user managed digital identities. Kerberos and Diameter, finally, are
classical network access protocols, however, it can be concluded, that they are well suited

for identity management purposes as well.

2.7. Summary

This chapter has introduced the related work to this thesis and evaluated existing ap-

proaches to identity management.

e Three web-based identity management approaches have been introduced: OpenlD,

the Liberty Alliance project and Microsoft CardSpace.

30

2. Related work

Two network-based authorization and authentication protocols have been intro-
duced: the Kerberos protocol and the Diameter protocol.

A comparison of those different approaches shows that all approaches, despite dif-
ferent focusses, provide basic identity management functions.

While the web-based approaches are rather recent, the network-based approaches
are well established and proven.

It can be assumed, that if Kerberos or Diameter can be adapted to a web-based
environment, they would be valid options as basis for an identity management
system for web applications.

Diameter seems to be more suitable for such an adaptation since it doesn’t require
support in the end use client.

31

3. Design

Based on the evaluation in the previous chapter, a new proposal for an identity man-
agement framework for web applications will be developed. This chapter describes the
design of the framework. As shown by the evaluation in Section 2.6 the Diameter protocol
already provides a number of features that are commonly required by identity manage-
ment solutions. It is also designed to be very well extendable by the means of Diameter
applications. Basis for the framework, therefore, will be the Diameter protocol which
will be extended by the design of a “Diameter Application for AAA and Identity Support
in Web Applications”, called Diameter WebAuth.

The Diameter Base Protocol itself is specified in RFC 3855 [8] and Diameter applica-
tions are usually specified in internet drafts which in some cases manage to become RFCs
themselves. The Diameter Maintenance and Extensions working group [58] attends those
application drafts. The group also published the Diameter Applications Design Guide-
lines [16]. The design process in this chapter will follow the design guidelines as well

as the recommendations by the RFC Editor concerning factual and technical issues!
[49, 60, 61].

3.1. Introduction

This chapter describes the Diameter Application for AAA and Identity Support in Web
Applications (Diameter WebAuth). The intended area of application for Diameter Web-
Auth are web applications that want to utilize a Diameter server for authentication,
authorization and accounting of their users. It implements means to supply a web server
with data to authenticate its user via common HTTP authentication methods and to
authorize and account the access to resources or services provided by the web server. It
also supports basic commands for the transmission of further identity information about
authenticated users in different identity information schemes.

Diameter WebAuth is meant to be applicable in scenarios like Identity Management
Frameworks where there are different trust relationships between the user, the Diameter

!Specifications regarding the format and formal standards have been widely ignored for the sake of a
consistent and appropriate layout of this thesis.

32

3. Design

client and the Diameter server. For example this means that no re-usable authentication
credentials are shared with the Diameter client and that the Diameter server can hold
back authentication or authorization information until they are actually needed by the
Diameter client. See Section 3.5 for privacy considerations.

The Diameter WebAuth does not rely on any other Diameter applications and can be
employed to provide as a lightweight, stand-alone AAA client or server. In appropriate
environments it can be used as a replacement for more complex authentication applica-
tions like the Diameter Network Access Server Application [10], especially if there are
complexity restraints like in embedded systems. Nevertheless it is interoperable with
other Diameter applications like the Diameter credit-control application [22] to extend
its capabilities.

3.1.1. Motivation and goals

There are Diameter applications available for a wide range of services, like network access
(]10]), Mobile IP [9] or the Session Initiation Protocol [19]. The existing applications how-
ever are not particularly suited for the deployment inside of web applications, although a
multitude of current web applications require authentication and authorization. They are
either very extensive and complex to implement or do not offer methods suitable for au-
thentication, authorization and accounting within a web-based environment. Therefore
web applications (or web servers itself for that matter) implement local or proprietary
authentication back-ends and databases or use services that are not primarily designed
for external AAA operations like LDAP [66] servers, database servers or even IMAP [13]
servers. Even though there might be a AAA service like Diameter available within their
administrative domain. The objective of this chapter is to specify a Diameter application
that does allows web servers and web applications to employ existing AAA structures
for authentication, authorization and accounting.

Because web applications usually offer services to a human end-user, they regularly
need further information about their user’s identity or preferences to personalize the
offered services. While a number of those attributes are highly service specific, there are
others which are closer associated with the user than with the service. Examples are
the user’s first and last name, his gender, age, contact or billing information. Instead of
having those information stored in a number of application specific databases for every
different service the user accesses within the AAA domain, it makes sense to deposit
them together with the user’s authentication and authorization credentials. In addition to
methods for authenticating, authorizing and account its users, this specification therefore
defines means to enable web applications to query Diameter servers for additional identity
information. This allows the web application to efficiently handle all its information

33

3. Design

demands within the Diameter protocol.

This specification is written with scenarios in mind, where Diameter server and Di-
ameter client are not part of the same administrative domain. For example this is the
case when the end-user signed up with a dedicated identity management provider which
operates a Diameter server infrastructure to provide authentication services to web ap-
plication providers. In these three-party scenarios, the end- user has a profound trust
relationship with the identity management provider but not with the service he us ac-
cessing. Therefore special attention has to be paid to secure the privacy of the end-user
against the application service provider while enabling the service provider to render its
service.

Recapitulatory, the goals for this Diameter application are, to be:

Lightweight and easily implementable as client in web servers, web applications and
other devices which utilize web-based user interfaces as well as a Diameter server
implementation.

Secure and private to be feasible for scenarios where the Diameter server and the
Diameter client are not part of the same administrative Domain, like third party
identity management provider services.

General in regards to identity information, to be able to transport and manage a wide
range of identity information data.

3.1.2. Use cases

This section describes a number of typical use cases that this specification is intended to
cover.

A web site wants to authenticate a user

A user accessing a web site needs to be authenticated in order to link him to some
identity. This can be necessary for example if a returning visitor ought to be matched
to his profile or if access to the site is limited to registered users only. Authentication
is usually also necessary to establish the identity of a user in order to perform advanced
tasks covered by this specification since they all center around a known user.

A web site wants to authorize a user for a specific service

A resource that is requested by a user requires special access privileges. The web site
needs to authorize the user for this resource before allowing him access. It is possible

34

3. Design

for the web site to maintain different areas with different access requirements so that
authorization needs to be repeated for different services and can yield different results.

A web site wants to charge a user for a specific service

If a user accesses a service that requires some sort of payment, the web site can charge
the user using this Diameter application. However, no credit reservations or assurances
for future credit operations are made. It is up to the web site to make sure to perform
the credit charge operation and wait for a positive response before granting access to the
service.

A web site wants to credit a user for a specific service

Besides charging a user, a web site can also credit or refund a user. This mechanism can
be used to counteract a charge that was made to the client earlier or to reflect a deposit
the user has made. The possibility to charge a user for a discount and later refund credits
that were not used can be used as a crude kind of credit reservation mechanism. It is
important to note that no service-specific accounts are maintained. Every web site using
the Diameter server for credit control is accessing the same account. Therefore web site
or service specific credit lines cannot be maintained.

A web site wants to check if a user has a certain credit

Sometimes bhefore actually charging a user, a web site is only interested if a user has a
certain amount of credit available. For example to decide if a user is granted access to a
certain premium area for prosperous customers or to filter offers based on the available
credit. Or the web site wants to warn a customer in the beginning of a tedious operation
if he may not have sufficient credit in the end. However, checking if a user has a certain
credit cannot be used to ensure a charging operation. Ounly the result of an actually
credit charge operation determines the amount of credit that has been deducted from
the user’s account.

A web site wants to retrieve user specific identity data

Authenticating a user only yields only a username which often is just some kind of handle
or alias. If a web site wants to retrieve additional information about the user it can query
the Diameter server for those identity information. This can be attributes like the first
and last name, a title, address or banking account. If the Diameter server can answer the
query, it will retrieve the information and return it to the web site. It is possible (and

35

3. Design

desireable) for a server side implementation of this Diameter application to allow the end
user some control over which of his personal data is accessable by the web site. This may
lead to a negative response from the Diameter server even if the data is available. Such
mechanisms are outside of the scope of this specification and depend on the respective
implementation. However, the web site will get an answer to its request, indicating that
access to the data is denied, This allows the web site for example to display a message
asking the user to check for potential access restrictions on his data.

A web site wants to store user specific identity data

Besides retrieving identity data, a web site can also request a Diameter server to store
user specific identity data. However, the Diameter server implementation might impose
certain restrictions on this operation, similar to the use case above where data is retrieved.
Although it maybe possible for implementation to arrange for site specific data storage
or some sort of private namespace for web sites, this is usually against the design of a
centralized data storage. Therefore web sites must account for the possibility that other
sites have access to and can modify the data stored on the Diameter server. The intended
data to be stored on a Diameter server is data that is only linked to the user but not to
the web site. Web site specific data should still be stored locally.

3.2. Overview

Goal of this specification is to support identity management functions in web applica-
tions using the Diameter protocol. This includes identifying users, verify their access
privileges and transport personal attributes that describe them. Furthermore this spec-
ification will provide basic means to charge users for accessed services. In terms of the
Diameter protocol, Diameter WebAuth provides a web server with the means to utilize
an AAA infrastructure to authenticate, authorize and account its users for the access to
its resources and services. Furthermore it provides methods to query the Diameter server
for additional information about the user’s identity. The following sections detail these
functions.

3.2.1. Authentication and authorization

Identifying a user and verifying his access privileges is probably the most vial part of
identity management. Diameter WebAuth extends the facilities provided by the Diam-
eter Base Protocol for a Diameter client to authenticate and authorize a user for this

36

3. Design

purpose. Two requirements are to be kept regarding the authentication. First, Diame-
ter WebAuth must use standard authentication methods that are supported by the user
client. The reason for that is, that Diameter WebAuth only specifies the protocol be-
tween the Diameter client and the Diameter server. It cannot alter or adjust the service
specific protocol between the user client and the Diameter client, HI'TP in this case.
The second requirement is that the authentication method needs to provide protection
against unauthorized access to secret credentials. In case of username/password authen-
tication this would be the password. Particularly this means that in scenarios where the
Diameter client is outside the trust domain of the Diameter server, the secret credentials
needs to be protected against the Diameter client itself.

The most common authentication method supported by web browsers is username/-
password authentication. RFC 2617 [18] specifies two HTTP authentication methods
which are widely supported by web browsers: Basic Authentication and Digest Access
Authentication. While the basic authentication exchanges the credentials including the
password in cleartext, the digest access authentication uses a one-way hash function to
prevent sending the password in cleartext. Although the digest authentication is not
intended to be an absolutely secure authentication scheme? it serves the purpose of pro-
tecting the user password against snooping by any entity between the user client and
the authenticator®. Besides HTTP digest access authentication, the Diameter WebAuth
specification will, nevertheless, support basic authentication as well. It can be used as
a fall back in environments where digest authentication is not available or not neces-
sary and to more generally support different authentication mechanisms. For example,
HTML-form-based authentication.

Authorization should support different roles and access levels. To implement this, first
a standard has to be defined that describes the different access levels. Because the Diam-
eter WebAuth design already uses parts of the Diameter credit-control application (cp.
Section 3.2.2), it will also use its way of specifying services. The service identifiers can
be used by web applications to request user differentiated authorization. The Diameter
credit-control application introduces service description based on a service context iden-
tifier combined with a service identifier. While the service context identifier is used to
describe the service specific document that applies to the request, the service identifier
designates the exact service within that document (cp. [22, Sections 4.1.2., 8.28.; 8.42.]).
More descriptive this means, that, for example, the service “access to administrative
functions” is identified by the service identifier “3” within the service context identifier

HTTP digest authentication offers no confidentiality protection beyond protecting the actual password
and is vulnerable to certain attacks (cp. [18, Section 4] and Section 3.6).
3In this case the Diameter server.

37

3. Design

“service-manifest-01@spl.example.com.”

Operation details

The authentication and authorization procedure starts when a user tries to access a
resource on the web server that is subject to authorization. Diameter WebAuth sup-
ports the HTTP Basic and Digest Access Authentication scheme [18]. This also includes
derivative methods such as user name/password authentication via HTML forms. The
Diameter client can include User-Name and User-Password attributes in an AA-Request
command to request basic authentication. If an authentication request does not include
a User-Password attribute, digest authentication is performed and the Diameter server
MUST respond with an AA-Answer that includes a HT'TP-Digest-Challenge.

The Diameter client can choose to initiate a HTTP Digest Authentication with its
user client prior to issuing a AA-Request by generating the values for the HTTP Au-
thorization Request Header by itself. It then uses its user clients response to construct
a HTTP- Digest-Response attribute and includes it in the initial AA-Request. This is
called “HTTP digest quick mode.” It effectively saves one Diameter message exchange
and relieves the Diameter sever form the necessity to maintain a state for the client dur-
ing a MULTI ROUND authentication. If the HTTP-Digest-Response attribute cannot
be verified by the Diameter server or it does not accept requests with Diameter client
generated contributions the Diameter server MUST discard the HTTP- Digest-Response
attribute and continue the authentication process as if the client had not sent the HTTP-
Digest-Response. If the Diameter server could verify the digest response but does not
accept Diameter client generated digest challenges in its authorization process, it MAY
include a Digest-Stale attribute set to “true” (without the surrounding quotes) in the
HTTP-Digest-Challenge to indicate to the Diameter client that the authentication was
otherwise successful but needs to repeated with the Diameter server generated challenge.

Another possibility to reduce protocol round trips and to mitigate load on the Diame-
ter server is to delegate the final authentication check to the Diameter client as described
in RFC 4740, Section 6.3. [19]. Because the user name is required in order to lookup
the password, this is only viable if the Diameter client already has an idea about the
identity of its client and can include a User-Name AVP into the AA-Request. In web en-
vironments, for instance, a web application can try to discover a recurring user’s identity
by using cookies to save a corresponding hint. However, if a Diameter client was mis-
taken about a user’s identity and included a false User-Name in an initial AA-Request,
it MUST terminate the Diameter session used for the initial request and start a new
session for the authentication using the correct user name.

Figure 3.1 shows an example for Diameter WebAuth using digest authentication. If a

38

3. Design

User Client Web Applicaton Identity Provider
(Web Browser) (Diameter Client) (Diameter Server)

Q
& | S2

(1) GET /protected.html————>
| ----------------------------- (2) AA-ReQUESt:---swsrareararasearaneas >

(3) AA-Answer

(4) 401 Unauthorized (incl. HTTP-Digest-Challenge)

|
| |
| (incl. WWW-Authenticate Header) |
| (5) GET /protected.html | ©)
incl. Authorization Head 6) AA-Request
: (incl. Authorization Header) : (incl. HTTP-Digest-Response)
| |

(7) AA-Answer

‘ (DIAMETER_SUCCESS)

«— (8)2000K
Figure 3.1.: Diameter WebAuth using HTTP digest authentication

user client initially sends a request for a resource without including any credentials (1),
the Diameter client starts the authentication and authorization request. The Diameter
client sends a, AA-Request to the Diameter server (2) which replies with an AA-Answer
(3). The AA-Answer includes data usable by the web server to compose a response to
the user clients request (4), challenging an authentication. If the Diameter client uses the
HTTP digest quick mode, the message exchange in steps (2) and (3) is omitted and the
Diameter client generates the data required for the authentication challenge in (4) itself.
Next, the client assembles his authentication credentials and sends another request to the
web server (5) including the user clients credentials. The Diameter client assembles an
AA-Request to the Diameter server with the corresponding information from the clients
request (6). If the credentials match the records in the Diameter server, it returns an AA-
Answer with the Result-Code AVP set to DIAMETER_SUCCESS (7). After receiving
a positive authentication response, the web server can respond to the user clients request
(8).

Besides general authentication, service specific authorization is supported. Services for
which the Diameter client wants to authorize its user are identified by the combination
of the Service-Context-Id and Service-Identifier attributes.

39

3. Design

3.2.2. Accounting

In addition to common identity management functions, Diameter WebAuth aims at pro-
viding web applications with some basic accounting support. This allows web applications
to relay fees it wants to charge the user for accessing a particular service to the Diam-
eter server. The Diameter server then checks the charge against the user’s account and
approves or denies the charge. This mechanism offers a number of advantages compared
to a solution where the web application has to implement accounting functions on its
own. First of all, there is not implementation effort on part of the web application. By
utilizing Diameter WebAuth the web application is automatically capable of processing
credit charges. Second of all, the web application provider does not need to concern itself
with invoicing, credit verification, transaction processing or security concerns. Thirdly,
the end user only needs to trust its identity provider with payment related data. This
increases the trust the user has into the payment system and also allows for a, for the web
application, transparent handling of payment methods. The user can maintain several
different payment methods and switch between them as needed without effecting the web
application provider in any way. Last but not least, centralizing the payment process-
ing at the identity provider generates synergy effects for the affiliated web application
providers because the effectively share a payment infrastructure. Especially for small
web sites, with only a very limited number of services or products they want to charge
for, it is beneficial to be able to use the identity provider also as a payment provider for
their customers.

The Diameter credit-control application RFC 4006 |22] specifies very extensive support
for credit handling in Diameter environments. The Diameter WebAuth specification
will use a subset of this specification to provide some basic credit control commands.
This coincides with the recommendation of the Diameter applications design guidelines
[16] to reuse existing Diameter applications and commands if possible. Furthermore it
allows a Diameter WebAuth client to be part of a full-blown Diameter credit-control
infrastructure. This specification uses the Credit-Control-Request and Credit-Control-
Answer commands from RFC 4006 [22, Sections 3.1. and 3.2.] to support the one time
credit events "Balance Check", "Direct Debiting" and "Refund" [22, Sections 6.2. to
6.4.]. The events will be detailed in the following sections.

Balance check

In order to check if a user has sufficient balance for a specific service, the Diame-
ter client issues a Credit-Control-Request command. The request MUST include a
CC-Request-Type AVP set to EVENT REQUEST, a Requested-Action AVP set to

40

3. Design

CHECK BALANCE and a Requested-Service-Unit AVP which contains the correspond-
ing balance value to be checked for. The Diameter server replies to a balance check
Credit-Control-Request with a Credit- Control-Answer where the Check-Balance-Result
AVP is present and set to either ENOUGH CREDIT or NO_CREDIT. For more infor-
mation on the credit-control balance check see RFC 4006, Section 6.2. [22].

Direct debiting

To charge a user for a service, the Diameter client issues a Credit- Control-Request com-
mand. The request MUST include a CC-Request-Type AVP set to EVENT REQUEST
and a Requested-Action AVP set to DIRECT DEBITING. The actual charged value is
included in a Requested-Service-Unit AVP. The Diameter server responds with a Credit-
Control-Answer which includes a Granted-Service-Unit AVP. For more information on
credit- control direct debiting see RFC 4006, Section 6.3. [22].

Refund

If a user needs to be refunded, the Diameter client issues a Credit- Control-Request com-
mand with the CC-Request-Type AVP set to EVENT REQUEST and the Requested-
Action AVP set to REFUND ACCOUNT. The refund value is included in a Requested-
Service-Unit AVP. The Diameter server responds with a Credit-Control-Answer which
includes a Granted-Service-Unit AVP. For more information on credit-control refunding
see RFC 4006, Section 6.4. [22].

3.2.3. ldentity attributes

Reliable authentication is probably the most important feature an identity management
framework has to provide. However, once the identity of a user is verified by the web
application, further personalization of the offered services is possible. For example, the
user can be welcome with a personal greeting that includes his name or the web site
can offer the user to use his personal address for shipping goods he orders. Those char-
acteristics describing an identity beyond the login name are called identity attributes.
This specification aims at including identity attributes into its framework. This allows
to store information that are closely linked to an identity in the same central manner the
identity is stored.

Diameter WebAuth provides some basic means to transport identity information over
the Diameter protocol. This can be attributes like first name, last name, address or other
contact information. The scope and value of the potential information is dependent on
the schema used to exchange these identity information. The schema is interchangeable

41

3. Design

and has to be predefined between the web application provider (Diameter client) and
the identity management provider (Diameter server). Therefor the actual format for
the values of the Identity-Attribute-Request AVP and the Identity-Attribute-Value AVP
is dependent on the employed identity information schema and is beyond the scope of
this thesis. Suitable schemes SHOULD be defined in another Diameter application, in
standards written by other standardization bodies, or in service- specific documentation.

Identity attributes are transported using the Identity-Information- Query/Response
AVPs. Multiple such AVPs can be included in a Diameter request or response to query
multiple identity information. Every Identity-Information-Query MUST be processed
separately by the Diameter. A special order of the AVPs does not need to be consid-
ered or retained. However the answer command to the request containing the Identity-
Information-Query AVPs MUST include a corresponding Identity-Information-Response
AVP for every Identity-Information- Query AVP.

Encapsulated identity querying within AA commands

Identity information querying is possible directly within the AA-Request/Answer com-
mands. This allows the client to immediately obtain identity information after an au-
thentication or authorization request without the need for another protocol run. If the
client includes an Identity-Information-Query AVP in an AA-Request command, the Di-
ameter server MUST first process the authentication and/or authorization request. If the
authentication and /or authorization is successful, the server then MUST process the iden-
tity information request and include the corresponding Identity- Information-Response
in its final message to the client. If the authentication and/or authorization fails, the
server MUST discard the Identity-Information-Query. Figure 3.2 shows an example of
encapsulated querying.

Using encapsulated identity querying is recommended when protocol efficiency is an
issue and the needed identity information are already known at the time of the authen-
tication and/or authorization request. Also the need for having a session opened on
the Diameter server can be avoided when the web application queries all the necessary
identity, authentication and authorization information during only one protocol run.

Dedicated identity querying

In case the web application needs identity information about its user outside an au-
thentication and/or authorization request, it can query identity information using the
Identity-Information-Request (ITR) command. Depending on the nature and sensitivity
of the identity data the Diameter server may require the Diameter client to authenti-

42

3. Design

Web Applicaton Identity Provider
(Diameter Client) (Diameter Server)

|
|
|
|
|
|
|

(1) AA-Request (incl.

Identity-Information-Query AVP)

<
<

(2) DIAMETER_MULTI_ROUND_AUTH

v

R

(3) AA-Answer (incl.
Identity-Information-Response AVP)

Figure 3.2.: Encapsulated querying of identity information inside AA commands

cate and/or authorize its user prior to process an Identity- Information-Query. In this
case, the Diameter server MUST set the Identity-Action-Result AVP to AUTHENTICA-
TION REQUIRED or AUTHORIZATION REQUIRED and not include an Identity-
Attribute-Value AVP in the corresponding Identity-Information-Result. Further privacy
considerations are discussed in Section 3.5.

3.3. Diameter WebAuth commands

A Diameter message exchange is dedicated to a certain command which is indicated by
the Diameter command code value inside the header of the packets associated with the
message exchange. Diameter commands put a Diameter message into a context for the
communicating partners. They define the AVPs that are valid in this context and how
the Diameter server, and the Diameter client respectively, are to process the messages
(cp. Section 2.5.1).

This section describes the Diameter commands and the associated Command-Code
values that MUST be supported by all Diameter implementations conforming to this
specification. The command codes are listed in table 3.1 and detailed consecutively.

43

3. Design

Command Name Abbrev. Code Reference

AA-Request AAR 265 Section 3.3.1
AA-Answer AAA 265 Section 3.3.2
Credit-Control-Request CCR 272 Section 3.3.3
Credit-Control- Answer CCA 272 Section 3.3.4
Identity-Information-Request IIR TBD* Section 3.3.5
Identity-Information-Answer ITA TBD* Section 3.3.6

* The values for new command codes have to be assigned by the ITANA.

Table 3.1.: Diameter WebAuth command codes

3.3.1. AA-Request (AAR) command

The AA-Request (AAR) command is specified in RFC 4005, Section 3.1. [10] and It is
used by the Diameter client to request authentication and/or authorization for its user.

If authentication is requested, depending on the authentication scheme and the se-
quence of requests different attributes MUST be present: User-Name and User-Password
for basic authentication and a HTTP-Digest-Response if it is an AA-Request following
an AA-Answer with its Result-Code set to DIAMETER MULTI ROUND AUTH and
including a HTTP-Digest-Challenge.

If authorization is requested, the Service-Context-Id and Service- Identifier attributes
are used to identify the service for which authorization is requested. If these attributes
are missing in the request and the Auth-Request-Type attribute is set to AUTHO-
RIZE AUTHENTICATE, the Diameter server SHOULD handle the request as if au-
thorization has not been requested.

The AA-Request command has the following ABNF* grammar (AVPs not required by

this specification are omitted):
<AA-Request> ::= Diameter Header: 265, REQR, PXY >

Session-Id >

Auth-Application-Id }

Origin-Host }

Origin-Realm }

Destination-Realm }

Auth-Request-Type }

User-Name]

A A A s A A

*ABNF stands for Augmented Backus-Naur Form and is a formal syntax specification [14].

44

3. Design

[User-Password 1]

[HTTP-Digest-Response]
[Destination-Host]

[Service-Context-Id]

[Service-Identifier]

[Proxy-Info]

[Route-Record 1]

[AVP]

3.3.2. AA-Answer (AAA) command

The AA-Answer (AAA) command is specified in RFC 4005, Section 3.2. [10] and is sent
by the Diameter server in response to an AA- Request.

If the AA-Answer is a response to a AA-Request initiating a digest authentication,
the Result-Code AVP MUST be set to DIAMETER MULTI ROUND_ AUTH and a
HTTP-Digest-Challenge AVP MUST be present. If the AA-Answer is a response to an
authorization request, the Service-Context-Id and Service-Identifier attributes identifying
the service for which authorization is granted or denied MUST be present.

The AA-Answer command has the following ABNF grammar (AVPs not required by
this specification are omitted):

<AA-Answer> ::

L I B T e T e T s B s B e W e W e W e W e SVANRPAN

Diameter Header: 265, PXY >
Session-Id >
Auth-Application-Id }
Auth-Request-Type }
Result-Code }

Origin-Host }
Origin-Realm }

User-Name]
HTTP-Digest-Challenge]
HTTP-Authentication-Info]
Service-Context-Id]
Service-Identifier]
Proxy-Info]

AVP]

* ¥

3.3.3. Credit-Control-Request (CCR) command

The Credit-Control-Request (CCR) command is specified in RFC 4006, Section 3.1. [22]
and is sent by a web application to initiate a credit-control accounting action. This spec-
ification only requires the support of AVPs required for the the one time events "Balance

45

3. Design

Check", "Direct Debiting" and "Refund" (cp. Section 3.2.2. This means that the CCR

command mainly has to allow for the CC-Request-Type AVP and the Requested-Action

AVP which indicate the type of credit operation requested and the Requested-Service-

Unit AVP which specifies the particular amount associated with the request. The CCR

command has the following ABNF grammar (AVPs not required by this specification are

omitted):
<Credit-Control-Request> ::= < Diameter Header: 272, REQ, PXY >

< Session-Id >

{ Origin-Host }

{ Origin-Realm }

{ Destination-Realm }

{ Auth-Application-Id }

{ Service-Context-Id }

{ CC-Request-Type }

{ CC-Request-Number }

[Destination-Host]

[User-Name]

[Event-Timestamp]

[Subscription-Id]

[Service-Identifier]

[Requested-Service-Unit]

[Requested-Action]

[Proxy-Info]

[Route-Record]

[AVP]

3.3.4. Credit-Control-Answer (CCA) command

The Credit-Control-Answer (CCA) command is specified in RFC 4006, Section 3.2. [22]
and is sent by a Diameter server to acknowledge a Credit-Control-Request command.
The CCA command in this specification, therefore, has to allow for AVPs that are used
to reply to the one time events supported here. These are the Granted-Service-Unit
AVP to answer "Direct Debiting" and "Refund" requests and the Check-Balance-Result
AVP which is used to answer a "Balance Check" request. The CCA command has the
following ABNF grammar (AVPs not required by this specification are omitted):

<Credit-Control-Answer> ::= < Diameter Header: 272, PXY >
< Session-Id >
{ Result-Code }
{ Origin-Host }

46

3. Design

L B T e Y e T e B e T s R e W e W e W

* ¥ ¥

Origin-Realm }
Auth-Application-Id }
CC-Request-Type }
CC-Request-Number }
User-Name]
Event-Timestamp]
Granted-Service-Unit]
Check-Balance-Result]
Proxy-Info]
Failed-AVP]

AVP]

3.3.5. ldentity-Information-Request (IIR) command

The Identity-Information-Request (ITR) is indicated by setting the Command-Code field
to TBD®. The “R” bit in the command flags also has to be set to designate this command
as a request. The ITIR command is used by the Diameter client to request additional
information about the identity of its user. The requested identity information are encoded
in one or more Identity-Information-Query AVPs that are included in the request. The
Identity-Information-Query AVP will be specified in Section 3.4.2. Depending on the
schema used for the identity request, the Diameter server might expect a User-Name
AVP also present to identify the user for which the information is requested. The IIR

command has the following ABNF grammar:

<Identity-Information-Request> ::

L T e B e B e W e W e W e W e VANRRAN

Session-Id >

Origin-Host }
Origin-Realm }

User-Name]
Proxy-Info]

[Route-Record]
[AVP]

* * *

®The values for new command codes have to be assigned by the TANA.

47

Diameter Header: TBD, REQR, PXY >
Auth-Application-Id }
Destination-Realm }

Identity-Information-Query }
Destination-Host]

3. Design

3.3.6. ldentity-Information-Answer (I1A) command

The Identity-Information-Answer (IIA) is indicated by setting the Command-Code field
to TBDS. The “R” bit in the command flags has to be cleared to designate this command
an answer. The ITA command is used by the Diameter server to respond to an Identity-
Information-Request. It includes an Identity-Information-Result AVP for every Identity-
Information-Query AVP that was present in the corresponding request. The Identity-
Information-Result AVP contains the outcome of the identity information operation in
the server that was initiated by the corresponding identity information query. The ITA
command has the following ABNF grammar:

<Identity-Information-Answer> ::= < Diameter Header: TBD, PXY >
Session-Id >
Auth-Application-Id }
Result-Code }

Origin-Host }

Origin-Realm }
Identity-Information-Result }
User-Name]

* [Proxy-Info]

* [Route-Record]

[AVP]

A A s A A A

*

3.4. Diameter WebAuth AVPs

Attribute-Value-Pairs (AVPs) are used by the Diameter protocol to encapsulate the indi-
vidual attributes of a Diameter message (cp. Section 2.5.1). The Diameter applications
design guidelines [16] strongly suggest to reuse AVPs that are defined in existing Diame-
ter applications where appropriate. The Diameter WebAuth specification will, therefore,
import AVPs from the Diameter Base Protocol [8], the Diameter Network Access Server
Application [10] and the Diameter credit-control application [22] to conform to the de-
sign guidelines and to avoid having to define new AVPs unnecessarily. To implement
the identity information commands, however, a number of new AVPs are defined by this
specification. The following section provides a listing of the AVPs used in Diameter
WebAuth commands and their values. Where appropriate, further explanations will be
given.

5The values for new command codes have to be assigned by the JANA.

48

3. Design

3.4.1. Imported AVPs
Diameter base protocol

A number of common attributes are used by Diameter WebAuth that are specified in
the Diameter base protocol (RFC 3588 [8]). Most noteably this is the User-Name AVP.
Since every Diameter implementation MUST implement the Diameter base application,
support for these AVPs can be taken as granted. For the sake of completeness, Table
A.1 in Appendix A lists all the AVPs that are reused from the Diameter base protocol
specification.

Diameter Network Access Server application

The HTTP basic authentication described in the Diameter WebAuth design, uses the
User-Password AVP defined in the Diameter Network Access Server application (RFC
4005 [10]) to transport the user password. Table A.2 in Appendix A lists all the AVPs
that are reused from the Diameter Network Access Server application specification.

HTTP-Digest authentication

The Diameter Session Initiation Protocol (SIP) application (RFC 4740 [19]) defines AVPs
to implement the HTTP-Digest authentication for its purposes. The Session Initiation
Protocol also uses the digest authentication described in RFC 2617 for its own underlying
digest authentication scheme [51, Section 22.4.]. The Diameter WebAuth specification,
therefore, reuses the AVPs specified in the Diameter SIP application in order to imple-
ment the HT'TP digest authentication. For descriptive reasons, however, some of them
are renamed. The following list describes the container AVPs that are imported.

The HTTP-Digest-Challenge AVP is identical to the SIP-Authenticate AVP [19,
Section 9.5.3.] and contains data related to the HTTP Authorization Request
Header [18, Section 3.2.2.|. Detailed ABNF grammer for this AVP is available in
Appendix A, Section A.3.

The HTTP-Digest-Response AVP is identical to the SIP-Authorization AVP [19,
Section 9.5.4.] and contains data related to the HTTP WWW-Authenticate Re-
sponse Header [18, Section 3.2.1.]. Detailed ABNF grammer for this AVP is avail-
able in Appendix A, Section A.3.

The HTTP-Digest-Info AVP is identical to the SIP-Authentication-Info AVP [19,
Section 9.5.5.] and contains data related to the HTTP Authentication-Info Header

49

3. Design

Attribute Name AVP Value Type Section defined
code

Identity-Information-Query ~ TBD* Grouped 3.4.2

Identity-Information-Result ~ TBD* Grouped 3.4.2

Identity-Action-Requested TBD* Enumerated 3.4.2

Identity-Action-Result TBD* Enumerated 3.4.2

Identity-Information-Schema TBD* UTF8String 3.4.2
Identity- Attribute-Request TBD* UTF8String 3.4.2
Identity-Attribute-Value TBD* UTF8String 3.4.2

* The values for new command codes have to be assigned by the ITANA.

Table 3.2.: Identity information AVPs

[18, Section 3.2.3.]. Detailed ABNF grammer for this AVP is available in Appendix
A, Section A.3.

A complete list of all AVPs from the Diameter Session Initiation Protocol (SIP) appli-
cation that are reused by this specification is provided in Appendix A.3.

Diameter credit-control application

This specification uses a subset of the Diameter credit-control application (RFC 4006
[22]). The credit control commands (cp. Sections 3.3.3 and 3.3.4) as well as the associated
AVPs used by Diameter WebAuth are defined in RFC 4006. A complete list of AVPs
that are reused from the Diameter credit-control application specification as well as some
further explanations are provided in Appendix A.4.

3.4.2. Identity information AVPs

The following section details the AVPs used by this specification to exchange identity
information. They are newly defined here and MUST be implemented by Diameter
applications conforming to the Diameter WebAuth specification. In the following the
AVPs will be described and further specified by the allocation of an AVP data format
according to the base protocol specifications (cp. [8, Sections 4.2. to 4.4.]).

Table 3.2 lists the AVPs, their AVP code values and types.

Table 3.3 lists possible AVP header flag values as described in the base protocol (cp. [8,
Section 4.1.]) and whether the AVP MAY be encrypted. The “MUST” column indicates

50

3. Design

which bit has to be set in the AVP header. All the identity information AVPs specified
in this section MUST have the “M” bit set which indicates that the support of this AVP
is mandatory. If an AVP with this bit set is received and not recognized, the complete
message MUST be rejected unless the receiving party is a Diameter Relay. The reason
for this is that all the AVPs are essential to the functionality of the identity information
operations. If an implementation does not support any of them, the identity information
facilities cannot work.

The “MAY” column indicates which header bits MAY be set for the corresponding
AVP. All the AVPs specified in this section MAY have the “P” bit set which indicates the
need for encryption for end-to-end security for the particular AVP. The “P” bit is allowed
for all the AVPs because encryption does not break the functionality of the identity
information operations since no other party than the Diameter client and server need to
be able to access them.

The “SHLD NO'T” column indicates header flags that should not be set for the corre-
sponding AVP. For the AVPs specified in this section, there are no flags that should not
be set. The “MUST NO'T” column indicates header flags that cannot be set for the corre-
sponding AVP. The “V” which indicates that the corresponding AVP code belongs to the
specific vendor code address must not be set for any AVP specified in this section. An
adoption as internet draft of this specification assumed, the AVPs will get official AVP
codes assigned by the IANA, and therefore, not belong to any vendor specific address
space.

The “Encr” column specifies whether encryption for this AVP is mandatory if the
Diameter message containing that particular AVP is sent via a Diameter agent (proxy,
redirect or relay). RFC 3588 specifies that “the message MUST NOT be sent unless
there is end-to-end security between the originator and the recipient and integrity /
confidentiality protection is offered for this AVP OR the originator has locally trusted
configuration that indicates that end-to-end security is not needed” |8, Section 4.5.|. This
form of protection is required for all of the AVPs specified in this section to ensure that
an intermediary party cannot access or alter the identity information included in the
message.

Identity-Information-Query AVP

The Identity-Information-Query (AVP code TBD) is of type Grouped’ and contains
data to specify the identity information requested by the client. It includes all the
AVPs necessary to compose a single identity information request. Those are an Identity-
Action-Requested AVP which specifies what kind of operation the client expects from

"Grouped AVPs are containers that include a number of other AVPs (cp. |8, Section 4.4.]).

51

3. Design

Attribute Name MUST MAY SHLD NOT MUST NOT Encr

Identity-Information-Query
Identity-Information-Result
Identity-Action-Requested
Identity-Action-Result
Identity-Information-Schema
Identity- Attribute-Request
Identity-Attribute-Value

SEZSEZ2E8
oYY T T
<< <<<<<
T i

Table 3.3.: Identity information AVP flags

the server, an Identity-Information-Schema AVP which specifies the schema to put the
request in context, and an Identity-Attribute-Request AVP which contains the actual
identity request. It can also include an Identity-Attribute-Value AVP in case the request
is supposed to store a value in the Diameter server. This means, the Identity-Action-
Requested AVP is set to STORE DATA (cp. Section 3.4.2). In this case, the Identity-
Attribute-Value AVP contains the value to be stored.

The Identity-Information-Query AVP has the following ABNF grammar:

AVP Header: TBD >
Identity-Action-Requested }

Identity-Information-Query ::= <
{
{ Identity-Information-Schema }
{
[
L

Identity-Attribute-Request }
Identity-Attribute-Value]

* [AVP]

Identity-Information-Result AVP

The Identity-Information-Result (AVP code TBD) is of type Grouped and contains the
result for an Identity-Information-Query. It mirrors the Identity-Information-Query AVP
from the corresponding request and additionally contains AVPs with the results. This
is for one, an Identity-Action-Result AVP which indicates whether the request was pro-
cessed successfully or the reason why it was not. In case the requested action was not to
store a value, the Identity-Information-Result AVP also includes an Identity-Attribute-
Value AVP which contains the result value for the request. If the requested action was
to store a value, the Diameter server MAY choose to mirror the Identity-Attribute-Value
AVP from the corresponding Identity-Information-Query AVP.
The Identity-Information-Result AVP has the following ABNF grammar:

52

3. Design

Identity-Information-Result ::= < AVP Header: TBD >
Identity-Action-Requested }
Identity-Action-Result }
Identity-Information-Schema }
Identity-Attribute-Request }
Identity-Attribute-Value]
AVP]

[B e W W e W}

Identity-Action-Requested AVP

The Identity-Action-Requested AVP (AVP code TBD) is of type Enumerated and is used
to determine the requested type of action for the corresponding identity information. At
this moment, the only actions supported are to retrieve data or to store data. The value

RETRIEVE DATA (0) requests the retrieval of the data specified by the Identity-
Attribute-Request AVP, and the value

STORE DATA (1) requests the storage of the data submitted with an Identity-
Attribute-Value AVP corresponding to the schema specific location in the Identity-
Attribute-Request AVP.

Identity-Action-Result AVP

The Identity-Action-Result AVP (AVP code TBD) is of type Enumerated and indicates
the result of an identity information request. The result can either be successfull in which
case the AVP contains a simple confirmation or the requested operation may have failed
in which case the AVP contains a hint to the reason for that. The values are:

RESULT _OK (0) if the request has been processed without errors.

ACCESS DENIED (1) if the Diameter client has no access privileges for the re-
quested action to the specific attribute. The access can be dependent on the
Identity-Action-Requested. For example a RETRIEVE DATA request maybe
granted but a STORE DATA request is denied.

AUTHENTICATION REQUIRED (2) if the Diameter client is required to au-
thenticate its user before the corresponding identity information query will be pro-
cessed.

AUTHORIZATION REQUIRED (3) if the Diameter client is required to autho-
rize its user before the corresponding identity information query will be processed.

53

3. Design

UNKNOWN SCHEMA (4) if the Diameter server does not recognize the identity
information schema the client submitted. Therefore the request could not be pro-
cessed.

INVALID REQUEST (5) if the Diameter sever could not process the request be-
cause it could not be validated according to the corresponding identity information
schema.

Identity-Information-Schema AVP

The Identity-Information-Schema AVP (AVP code TBD) is of type UTF8String and con-
tains the identifier for the identity information schema that applies to the corresponding
Identity-Information- Attribute. The UTF8String format is chosen for this and the fol-
lowing AVPs since it seems to be the most appropriate. An UTF8String is a human
readable string in Unicode format. The identifier is needed in order to understand how
to interpret the identity information correctly and is allocated by the service provider,
the web application provider, the device manufacturer or by a standardization body. It
MUST uniquely identify a schema to describe identity information. The format of the
Identity-Information-Schema is:

"identity-schema" "@" "domain"
identity-schema = Token

domain = String that represents the entity that allocated the
identity-schema (e.g. ietf.org or provider.example.com)

If the requested identity schema is unknown to the responding Diameter server, it
MUST include the Identity-Action-Result AVP set to UNKNOWN SCHEMA in its
reply.

Unless the identity information schema is for private use only, it SHOULD be defined
in another Diameter application, in standards written by other standardization bodies,
or in service- specific documentation. Otherwise it is RECOMMENDED to publish the
specification as informal RFC.

Examples of identity schemes are:

vCardv3.0@imc.org
ax1.0Qopenid.net

54

3. Design

Identity-Attribute-Request AVP

The Identity-Attribute-Request AVP (AVP code TBD) is of type UTF8String and con-
tains the attribute request according to the identity information schema.

The possible values of the Identity-Attribute-Request AVP are schema specific and
therefore not specified in this thesis. Whoever predefined the identity information schema
is also responsible for describing the syntax and semantics for the Identity-Attribute-
Request values.

Identity-Attribute-Value AVP

The Identity-Attribute-Value AVP (AVP code TBD) is of type UTF8String and contains
the attribute value matching the Identity-Attribute- Request AVP.

The possible values of the Identity-Attribute-Value AVP are schema specific and there-
fore not specified in this thesis. Whoever predefined the identity information schema is
also responsible for describing the syntax and semantics for the Identity-Attribute-Value
values.

3.5. Privacy considerations

The Diameter application aims at covering setups where Diameter clients and Diameter
servers belong to more than one administrative domain. In those setups the end user
often has a trust relationship with the provider of the Diameter server but not with
the provider of the web applications that are the Diameter clients. In order to allow a
smooth operation of the services the user requested, the Diameter server has to make
certain personal information about the user available to the application provider. And
although the user should be aware of that, it can be generally expected that access
to such personal information is kept on a minimum need-to-know basis across different
administrative domains. For example the application provider may need to know if the
user has a certain membership which allows him to access the service he requested. The
number and details about further memberships the user may or may not have however, is
not relevant for the application provider at that moment. This section therefore addresses
a number of privacy consideration that may arise in general or when dealing with a setup
over multiple administrative domains. Since usually there are no private information that
the client has but not the server, the privacy considerations will focus on the issue to
protect information that are available in the Diameter server from access by the Diameter
client.

95

3. Design

There are three different sets of data that are directly (by value) or indirectly (by
true/false responses) accessible by the Diameter client. There are authentication and
authorization data, credit related data and identity information data.

3.5.1. Authentication

Generally, in setups where user privacy is an aspect, Diameter servers SHOULD always
require a user authentication before any kind of personal information is made accessible
to the Diameter client. By requiring an authentication, user data probing by a rogue or
compromised Diameter client is made more difficult since only data from users that are
currently logged onto the client or whose login credentials are known can be pried. If the
authentication status for a session is not maintained on the server, every action specified
in this chapter can be queried using an AA-Request command which then MUST also
include proper authentication credentials. However since an authentication procedure
possibly triggers some kind of user interaction in the web client, it is RECOMMENDED
to keep such AA- Requests to a minimum. This can be achieved for example by query-
ing the Diameter server for all the data that is likely to be needed for a session inside
the first request. Although this may sound counterintuitive to the objective of keeping
private information exposure on a minimum need-to-know basis, it doesn’t make a dif-
ference if data which a client is entitled to is transferred all at once in the beginning of a
session or gradually throughout the session. Implementations of this specification which
want to allow privacy protection SHOULD offer a configuration option to enforce user
authentication before any other operation is allowed.

A Diameter WebAuth implementation SHOULD protect personal data by keeping au-
thorization data service specific and by limiting available authentication schemes to the
ones which do not expose sensitive data. Keeping authorization data service specific
means that the Diameter server SHOULD NOT authorize the user for services that the
Diameter client doesn’t actually offer. This means that an AA-Answer to an authoriza-
tion request SHOULD NOT include Service-Identifiers for services that are unavailable
at the client the request came from. Unfortunately, the Diameter server cannot directly
influence the authentication scheme that the Diameter client uses with its web client
(cp. also Section 3.6.3). However, limiting the available authentication schemes to more
secure ones will hopefully encourage Diameter clients to be deployed using only the
available authentication schemes to begin with. This should make eavesdropping on the
Diameter client, web client connection more difficult and also will require more changes
to a compromised Diameter client in order to gain access to plain text authentication
credentials. The only authentication scheme which can be considered reasonable secure
and is currently supported by this specification is HT'TP-Digest authentication.

56

3. Design

3.5.2. Credit-control

In order to protect user sensitive credit data, a Diameter server implementation MAY
offer a facility to hide the user’s credit balance. If a Diameter server wants to hide the
actual user’s credit balance it MUST answer a credit-control balance check request with
ENOUGH _CREDIT, regardless of the actual credit balance if the credit control server
is willing to accept credit charges for the particular user and NO _CREDIT otherwise.
Please not, that this behavior is not covered by RFC 4006 [22]. However since a balance
check answer is not intended to make any credit-reservations or promises about the credit
balance beyond the moment of the request, this behavior will not break compatibility
with other Diameter credit-control implementations. To be sure that a user is charged
for a service the Diameter client is about to grant him access to, the Diameter client
MUST only rely on the resulting Credit-Control-Answer to his DIRECT DEBITING
Credit-Control-Request.

3.5.3. Identity information

Identity information available at the Diameter server can include a wide variety of per-
sonal data. Depending on the overall site setup those data can vary from marginally
sensitive data with relevance to all Diameter clients to highly sensitive data which is
only relevant to a small fraction of the attached Diameter clients. A specific recom-
mendation how to protect identity information on an implementation level cannot be
given here. In general, a Diameter WebAuth server implementation SHOULD offer some
sort of access control system for the available identity information, which allows to con-
trol what identity information is available to which Diameter client. Beyond the actual
server implementation a Diameter WebAuth server provider SHOULD offer its clients
some sort of control or at least disclosure about what identity information are available
and accessible to which Diameter client provider.

3.6. Security considerations

This chapter describes a Diameter application which enables web applications to access
AAA services of a Diameter server. The Diameter Base Protocol (RFC 3588) is used for
the communication between the Diameter client and the Diameter server. The security
considerations for the Base Protocol, therefore, apply for this specification as well [8,
Section 13]. They address the application of IP security (IPsec) and Transport Layer
Security (TLS) to secure Diameter messages. For this specification it is assumed, that the
message exchange between the Diameter client and the Diameter server can be reasonably

57

3. Design

secured by respecting the security considerations in RFC 3588.

For the communication between the end user and the Diameter client a service specific
protocol is used. When the Diameter client is employed in a web application, usually this
will be the Hypertext Transfer Protocol (HTTP, RFC 2616). The security considerations
for the service specific protocol SHOULD be considered when a Diameter WebAuth client
is implemented. In case of a web application employing HT'TP, the correspondent security
considerations are made in [17, Section 13]. In either case, since the service protocol is
used to exchange authentication information with the end user, measures SHOULD be
taken to secure the communication between the Diameter client and the end user client.
To secure HTTP message exchanges, for example, HTTPS (HTTP over TLS, RFC 2818
[48]) SHOULD be used.

3.6.1. Basic authentication

The basic authentication scheme uses a cleartext® user name/password combination to
authenticate a user. This makes the basic authentication absolutely insecure. First of
all, the password is exposed to any third party which might be able to listen to the
message exchange between the user client and the Diameter client. For example be-
cause the message exchange is not encrypted, the encryption was broken of for other
reasons. And second of all, the password, inevitably, is exposed to the Diameter client.
Especially in setups where the Diameter client and the Diameter server are not part of
the same administrative domain this severely compromises the end user’s identity. Even
in setups where Diameter client and server are within the same administrative domain,
user passwords should never be accessable in cleartext. Otherwise in case of a compro-
mised Diameter client, all the user accounts are compromised too. Because the basic
authentication is that insecure, it SHOULD NEVER be employed in a productive Diam-
eter setup, unless absolutely no other option is viable. Furthermore basic authentication
SHOULD only be used over encrypted and secure transport channels with some sort of
server authentication before the credentials are sent. Besides these Diameter WebAuth
oriented security considerations, those of the HI'TP Authentication specification (RFC
2616, [18, Section 4.] also need to be considered. They state explicitly that “the Basic
authentication scheme is not a secure method of user authentication, nor does it in any
way protect the entity, which is transmitted in cleartext across the physical network used
as the carrier.”

8Technically the user name and password are encoded using the base 64 encoding scheme [26]. This is,
however, only an encoding, not an encryption and thus reversible without difficulty.

o8

3. Design

3.6.2. Digest authentication

Like the basic authentication, the digest authentication uses a user name in combina-
tion with a password to authenticate the user. In contrast to the basic authentication,
however, the digest authentication does not exchange the password in cleartext. It uses
a one-way hash function to calculate a check value from the combination of the user
password and a nonce that was exchanged with the authentication partner. Both au-
thentication partners calculate this value on their own, and the client which is to be
authenticated sends its value to the authenticator. If the values match, both used the
same password and, therefore, the authentication is successfull.

The digest authentication, if implemented and executed correctly, does provide a better
authentication mechanism than basic authentication. Especially an eavesdropping third
party cannot recover the cleartext password from an intercepted message exchange. Nor
can he use it for replay attacks when the server does not reuse its nonce values. Neverthe-
less, the HT'TP Authentication specification (RFC 2616, [18, Section 4.]) has a number of
security considerations that must be considered. Especially is the digest authentication
scheme susceptible to man in the middle attacks. It does provide some resilience against
the attacker recovering the cleartext password in those cases though. Also the security
considerations of the RADIUS Extension for Digest Authentication specifications (RFC
4590) which the Diameter digest authentication is derived from need to be considered
[55, Section 8.|. As a result, the digest authentication scheme also SHOULD only be used
over encrypted and secure communication channels. This includes the authentication of
the Diameter client to the user client, for example HI'TPS with public key certificates.

3.6.3. Renegade or compromised WebAuth clients

Special considerations need to be made for the situation where a Diameter WebAuth
client is compromised or renegade. In both cases the WebAuth client will try to exploit
its natural position as man in the middle between the user client and the Diameter server
to compromise user accounts. A natural goal of an attacker in this position is to gain
access to cleartext user credentials. Since the Diameter WebAuth server does not allow
direct querying of user names or passwords, the WebAuth client has two possibilities.
It can probe for valid user name/password combination if the server accepts basic au-
thentication AA-Requests or it can wait for user to authenticate themselves. Probing
for valid combinations is not very promising and will not considered any further here.
Having users to try and authenticate themselves to a WebAuth client that is trying to
compromise their accounts, on the other hand, is a severe problem:.

As discussed above, when using digest authentication even a man in the middle attack

59

3. Design

has only limited chances of recovering the cleartext password. A man in the middle
attacker, however, can simply switch the authentication scheme used towards the user
client to basic authentication. This would give him unrestricted access to the cleartext
user name and password for every user that logs in through the Diameter client. This
kind of attack is described in RFC 2616 as well |18, Section 4.|. Coinciding with the
RFC, the only viable options to counteract such attacks lie within the user agent. For
example, only if the user agent warns the user when basic authentication is requested,
or in general indicates to the user what kind of authentication is about to be used,
this kind of attack can be prevented by the user. Another possibility is for the client
to offer a configuration option which either disables basic authentication completely or
just for different web sites. For the future of this specification it also SHOULD be
considered to implement other authentication methods. This will not prevent renegade
or compromised WebAuth clients from being able to switch authentication schemes, but
from a user’s perspective it is much more obvious when, for example, instead of the usual
certificate based authentication a web server suddenly ask for a password.

3.7. Summary

In this chapter, a new approach to identity management for web applications was de-
signed.

e A proposal for network-based identity management in web applications was devel-
oped.

e The proposal is called Diameter WebAuth and is implemented as a Diameter ap-
plication.

e Diameter WebAuth includes commands to authenticate and authorize users, charge
them, and query additional identity information about them.

e The specification includes HTTP basic and digest authentication mechanisms.

e A Diameter WebAuth client can be seamlessly integrated into a Diameter credit-
conroll infrastructure or use a Diameter WebAuth server for basic credit-control
operations.

e The identity information commands are suitable to support arbitrary identity in-
formation schemes.

e Specific privacy and security considerations have been made.

60

4. Implementation

In the previous chapter a new approach to identity management for web applications
based on the Diameter protocol was developed. To augment and support the theoretical
approach with a practical implementation, the different elements of a common web ap-
plication setup that employs Diameter WebAuth were implemented. This includes the
development of a working prototype of the Diameter WebAuth application as designed
in the previous Chapter as well as a web application to showcase the potentials of the
proposal.

4.1. Overview

Figure 4.1 shows an overview of the different parts of the implementation work that
will be done in this chapter. The setup includes a user that access a web application
via his browser. The web application will employ the Diameter WebAuth framework
to perform identity management actions against a Diameter server. For example, user
authentication and identity attribute querying.

To reproduce this setup in the prototype implementation, three different components
need to be implemented. First, the server element of Diameter WebAuth. Second, the
client element and third the web application which employs the WebAuth framework.
The goal of the implementation work is to have a working prototype implementation
of a complete Diameter WebAuth setup including a web application to demonstrate its
features. The use-cases specified in Section 3.1.2 will be used as a guideline for the
implementation and its validation. This means, the implementation has to cover and
handle all the use cases as described in the design.

4.2. Diameter WebAuth application

In the following the implementation of the Diameter application will be presented in
detail. First the implementation of the general classes that are employed by both, client
and server applications, will be illustrated. After that, the server implementation followed

61

4. Implementation

0
MyBlog Web X G WebAuth Client
Application i
pp Web Server Implementation

)) N
User Client Diameter Server

ebAuth Serve
Implementation

Figure 4.1.: Overview of the prototype implementation

by the client implementation will be detailed. Finally, the implementation of a small test
suite is discussed.

4.2.1. Implementation basis

At the beginning of the implementation work, a suitable implementation basis had to be
found. Since the focus of this work is a Diameter application rather than a comprehen-
sive implementation of a Diameter stack including the base protocol, it was desireable to
find an Diameter implementation that could be extended by the application designed in
this thesis. The criteria for such a project were that it must have a working implementa-
tion of the base protocol as well as a working client/server implementation, that is was
available under a licence which permits to use it for this work and that it was acceptable
documented.

At the end of the evaluation phase the decision was made to use the Java implemen-
tation JDiameter [63]| as basis for the implementation work. At a close second was the
OpenDiameter C-++ implementation [40] but it doesn’t seem to have a solid client /server
implementation yet and the documentation was outdated. Furthermore the Java tech-
nology is very well suited for web application development, which was assumed to ease
the development of the showcase web application in this work later on.

4.2.2. Structure

The Diameter WebAuth application specifies three command sets which need to be im-
plemented in the prototype implementation. Those are AA commands (AA-Request and
AA-Answer), Credit-Control commands (Credit-Control-Request and Credit-Control-
Answer) and Identity-Information commands (Identity-Information-Request and Identi-
ty-Information-Answer). Also there will be a client application and a server application.
Since the server application requires user specific data to answer requests it also needs

62

4. Implementation

some database backends for data storage. Therefore the Diameter implementation is
split into the following packets:

diameterwebauth is the root package.

diameterwebauth.application holds generic Diameter WebAuth classes.
diameterwebauth.application.auth holds AA command related classes.
diameterwebauth.application.credit holds credit-control command related classes.

diameterwebauth.application.identity holds identity information command related
classes.

diameterwebauth.client holds client implementation specific classes.
diameterwebauth.server holds server implementation specific classes.
diameterwebauth.server.db holds database classes for the server implementation

diameterwebauth.tests holds simple test applications to verify the client and server
implementation.

This package hierarchy reflects a separation of client, server and the specific command
concerns. It follows the modularity approach of object oriented programming and facili-
tates the maintenance of the software.

4.2.3. Message abstraction

A Diameter application from the programmers point of view can be seen as a very
message-driven matter. The application logic on the client side as well as on the server
side surrounds one or multiple message exchanges. According to the task which has to be
accomplished, the Diameter client has to compose a Diameter message, send it and then
react to the answer message. For the server application it is the reversed direction. The
server receives a message, reacts to it, then composes an answer message and sends the
answer. In order to ease the implementation, the first step therefore is it to implement
an easy access to the Diameter messages from the application logic code. Indeed the
underlying JDiameter implementation does allow direct access to the messages, more
specific to the AVPs in a message. However, the access is rather cumbersome by decoding
or encoding the actual data values by specifying the AVP code and data type everytime
the value is read or written. To access grouped AVPs it is furthermore necessary to first
specify the grouped AVP and then access the AVPs in a recursion.

63

4. Implementation

Therefore a layer of abstraction on top of the JDiameter messages will be implemented.
This DiameterMessage class will provide getter and setter methods for all message pa-
rameters by name and provide means to be encoded into and decoded from an underlying
protocol message. It will also offer constants for AVP values which are of the enumerated
type and command codes. By introducing the DiameterMessage class every application
object can handle Diameter message by the usage of qualified instance methods and
constants. This allows for a cleaner and more apparent access than using the generic
methods which require numerical AVP codes and error handling everytime a value is
accessed. For example application classes can now use code like

if (request.getAuthRequestType() == request .AUTHORIZE AUTHENTICATE) {
if (!checkPassword(request.getUsername (), request.getPassword)) {
resultCode = DIAMETER AUTHENTICATION REJECTED;
} else if (!checkAuthorization(request.getUsername(),
request . getServiceldentifier ())) {
resultCode = DIAMETER AUTHORIZATION REJECTED;
} else {
resultCode = DIAMETER,_SUCCESS;
}

answer . setUsername (request . getUsername ());
answer.setServiceldentifier (request.getServiceldentifier ());

}

instead of

try {
if (request.getAvps().getAvp(274).getUnsigned32() = 3) {

try {
username = request.getAvps().getAvp(1).getUTF8String ();
password = request.getAvps ().getAvp(2).getOctetString ();
serviceld = request.getAvps().getAvp(439)

.getOctetString ();
catch (Exception e) {

if (!checkPassword(username, password)) {
resultCode = 4001;

64

4. Implementation

} else if (!checkAuthorization (username, serviceld)) {
resultCode = 5003;

1 else {
resultCode = 2001;

}

if (username != null) {
answer . getAvps ().addAvp (1, username, false);

if (serviceld >= 0) {
answer . getAvps ().addAvp (439, serviceld);
}

}

} catch (Exception e) {

}

As shown by these two examples, the new message abstraction layer does make the
code more readable and alleviates exception handling. It also conveniently checks for null
values before encoding any data into a message. But the most important gain is that the
actual AVP code values and datatypes are being encapsulated by the abstraction layer.
Any application class using those abstracted messages does not need to be concerned
with anything else but Java types, named attributes and named constants.

In order to adapt the DiameterMessage class to each application command, the basic
class is implemented as an abstract class which need to be extended for each particular
command. The parent class provides common constants for example for Diameter status
codes. It also implements getter and setter methods for common attributes like the result
code AVP. Furthermore it implements methods to encode and decode single AVPs into
the actual Diameter message. Those encode and decode methods conveniently handle
exceptions, null pointers and the conversion between Diameter data types and Java
data types. The inheriting classes will add getter and setter methods for command
specific attributes and constants. They will also extend the methods to encode and
decode the complete message and to verify it. Figure 4.2 shows the hierarchy for the
implemented message classes. Visible are the three classes AuthMessage, CreditMessage
and IdentityMessage which each succeed the common DiameterMessage class in order to
adapt them to the particular commands.

65

4. Implementation

DiameterMessage
g simplified illustration of

-resultCode WebAuth message classes.
-commandCode
+isAnswer() : boolean(idl)
+isValid() : boolean(idl)

+encode...()
+decode...()

AuthMessage CreditMessage IdentityMessage
-commandCode = 265 -commandCode = 272 -commandCode = TBD
-userName -requestedAction -identitylnformationQueries
-userPassword -requestedServiceUnit -identitylnformationResults
-httpDigestChallenge -grantedServiceUnit +get...()
-httpDigestResponse +get...() +set...()
+get...() +set...()
+set...()

Figure 4.2.: Diameter WebAuth message classes

4.2.4. Server implementation

The Diameter server is responsible for accepting Diameter requests, process them and
reply with a corresponding Diameter answer. The underlying JDiameter server imple-
mentation handles tasks like network access, bit-encoding and decoding of messages,
transport and routing. Therefore the main task is to provide the server-side logical
implementation of the Diameter WebAuth application.

Message handling

The actual server program is implemented in the WebAuthServer class. It is intended
to be started from the command line and run as a background process. When the
server process is started, it reads the configuration file and setups the Diameter stack
accordingly. Then it will initialize the databases with the user data and register a handler
with the Diameter stack. The handler is responsible for processing incoming Diameter
requests with a matching Diameter application id. Different handlers can be registered
in order to support different Diameter applications. The Diameter WebAuth handler
itself uses three subhandlers for the three different command sets. Figure 4.3 shows the

66

4. Implementation

class diagram of the server implementation.

If the server receives a message with its application id AVP set to Diameter WebAuth
that doesn’t belong to an existing session, it invokes the processInitialRequest(...)
method of the registered ServerHandler. The ServerHandler then processes the request by
examining the command code AVP value and delegating the request to the appropriate
sub-handler. The sub-handler responsible for the request then processes the command
and returns a DiameterMessage object. The message object is then encoded into a
Diameter answer and handed-off to the Diameter stack for transport.

Authentication and authorization handler

Incoming AA-Requests are processed by the ServerAuthHandler. It examines the present
AVPs and deducts the intend of the request. Then the appropriate action is taken in
order to fulfil the request. The result is encapsulated into a DiameterMessage which then
is returned.

A client can request user authentication or user authorization or both using a AA-
Request.! Table 4.1 lists the possible actions the ServerAuthHandler class will perform.

First the handler processes the authentication part of the request. Depending on the
present AVPs either a basic authentication or a digest authentication is performed. The
digest authentication consists of a digest challenge and a digest response (cp. [18], Section
3.2.). If the request does not include a HTTP-Digest-Response AVP, the handler creates
a digest challenge and puts it in the AA-Answer message. The answer is then send back to
the client as part of a multiple round trip authentication. This means that the client has
to provide further data in order for the server to be able to perform the authentication. If
a HTTP-Digest-Response AVP is present in the AA-Request, the message is treated as a
subsequent message in a multiple round authentication. The values of the HT'TP-Digest-
Response AVP can then be used to perform a digest authentication. If authentication
was requested by the client and did not lead to a success, processing of a potential
authorization request is skipped. This is done because a Diameter message is limited to
a single result code. Therefore the authentication result gets precedence and its result
code is returned to the Diameter client.

Processing the authorization part of an AA-Request is rather simple. The WebAuth
specification uses the Service-Id AVP in context with an optional Service-Context-Id
AVP to identify the service for which authorization is requested. If the service con-

! Actually, the WebAuth application also allows for requesting credit control actions or identity infor-
mation in a AA-Request. But in those cases the requests are passed on to be processed by the credit
control handler and identity information handler respectively. The corresponding handler than treats
them as if they were intended for it.

67

4. Implementation

|
«uses»
|

|
«uses» «uses»

Figure 4.3.: Diameter WebAuth server implementation class diagram

68

4. Implementation

Table 4.1.: ServerAuthHandler actions

Condition Action performed

Result

Authentication actions

User-Name and User Basic authentication

-Password AVPs present

HTTP-Digest-
Response AVP present

Digest authentication

User-Password AVP
and HTTP-Digest-
Response AVP missing

Generate HTTP-
Digest-Challenge

SUCCESS or AUTHEN-
TICATION REJECTED

SUCCESS or AUTHEN-
TICATION REJECTED

MULTI ROUND AUTH

Authorization actions

Authorization with
standard service context

Service-Id AVP present

Authorization with
specified service context

Service-1d and Service-
Context-Id AVP present

SUCCESS or AUTHO-
RIZATION REJECTED

SUCCESS or AUTHO-
RIZATION REJECTED

69

4. Implementation

text is transmitted in the request, it is used together with the service identifier in the
authorization process. Otherwise a standard service context is used. Authorization re-
quests result in an AA-Answer with its result code set to DIAMETER SUCCESS or
DIAMETER AUTHORIZATION REJECTED, depending on the outcome of the au-

thorization.

Credit control handler

The ServerCreditHandler class is responsible for processing incoming CC-Requests. The
Diameter WebAuth application implements a small subset of the Diameter credit-control
application [22]. These are the actions “Balance Check”, “Direct Debiting” and “Refund”
(cp. Section 3.2.2). They are called one time events, which means that they are handled
in only one message exchange.

The implementation of the ServerCreditHandler class is rather straight forward. The
Requested-Action AVP of an incoming CC-Request determines whetever the client re-
quests a balance check, debiting a user or refunding a user. Then the appropriate at-
tributes are evaluated and a request is made to the credit database. The database
determines to what amount the request can be fullfiled. For example, if a client requests
to debit a user for 100 credit units but the particular user only has an amount of 80 credit
units available, only those 80 credit units are actually debited. The Granted-Service-Unit
AVP in the CC-Answer reflects this amount of provided credits.

Identity information handler

II-Requests are processed by the ServerldentityHandler class. Every II-Request contains
a number of Identity-Information-Query AVPs. Each of these AVPs contains details
about the requested identity attribute and is processed separately. The identity infor-
mation handler iterates over the included Identity-Information-Query AVPs and passes
the containing requests to the identity database. Then the II-Answer is populated with
the corresponding Identity-Information-Result AVPs.

Backend databases

The user data required by the Diameter server to process incoming requests, is stored in
a number of backend databases. The implementation includes three different databases
for the three command sets. Those are the AuthDatabase class, the CreditDatabase class
and the IdentityDatabase class. The reason to implement a different database for each
command set was mainly a sense of modularity. Each of the commands requires different
data and there are no intersections between them. The data for each database class is

70

4. Implementation

users.xml:
<webauth-users>
<user name="bob" password="bobssecret" services="1, 2" />
<user name="alice" password="alicessecret" services="2, 3" />

</webauth-users>

credit.xml:
<credit-users>
<user name="bob" credit="2300" />
<user name="alice" credit="1000" />

</credit-users>

identity.xml:
<identity-users

identity-schema="myblog.key-value-pairs@id-provider.example.com" >

<user name="Bob">
<identity-information key="firstname" value="Bob" />
<identity-information key="lastname" value="Bobber" />
<identity-information key="title" value="Mr." />
<identity-information key="color" value="#3366FF" />
<identity-information key="email" value="bobbQexample.com" />

</user>

</identity-users>
Figure 4.4.: XML database files

kept in XML files which are read when the corresponding database is instantiated. Figure
4.4 shows a short excerpt of each of the XML files. XML provides a fast and structured
possibility to make data persistent. The XML data backends, however, are designed to
be easily switchable for other backends. For example relational databases or directory
services.

Besides getter and setter methods for single data atoms, the database classes also
provide a number of methods to perform actions related to their data. For example the
credit database encapsulates debit and refund actions in corresponding methods. This
way other classes can conveniently perform more complex operations without having to
handle exceptions, null values or synchronization issues everytime.

71

4. Implementation

4.2.5. Client implementation

The counterpart to the server implementation is the implementation of a Diameter Web-
Auth client. Opposite to the WebAuthServer class, the WebAuthClient class is not in-
tended to be run from the command line but to be used by other applications. The server
applications is a stand along program, that is self-contained and runs in the background.
The Diameter client application on the other hand provides access to Diameter func-
tions for other programs. In this case the client is designed to provide web applications
an interface to Diameter WebAuth operations. Those are authentication, authorization,
credit control and identity information querying. The WebAuthClient class attends to
initializing the underlying Diameter client stack, assembling the Diameter request mes-
sages and evaluating the answers send by the server. It provides a number of methods
which encapsulate basic Diameter operations, the Diameter WebAuth specification of-
fers. In the following some of those methods available for applications employing the
WebAuthClient class are listed and explained.

public boolean basicAuthentication (String username,
String password)

Sends an authentication request (AA-Request) to the Diameter server, requesting basic
authentication for the given user with the given password. Returns true if the authen-
tication with those credentials is positive, false otherwise.

public boolean authorize(String username, int service)

Sends an authorization request (AA-Request) to the Diameter server, requesting autho-
rization for the given user and the given service in the standard service context. Returns
true if the user is authorized for the service, false otherwise.

public Set<IdentityInformation> getldentityInformation (
String username,
Set<IdentityInformation> identityInformation)

Sends an identity information request (II-Request) to the Diameter server. The request
contains the given username and Identity-Information-Query AVPs for each of the Iden-
tityInformation objects in the given set. Returns a Set<IdentityInformation> con-
taining one IdentityInformation object for each of the Identity-Information-Result AVPs
present in the answer.

public long directDebit (String username,
long serviceUnits)

72

4. Implementation

Sends a credit-control request (CC-Request) to the Diameter server, requesting to debit
the given user the given amount of service units. Returns a long value containing the
actual amount of units that were debited from the user’s account.

public boolean balanceCheck(String username,
long serviceUnits)

Sends a credit-control request (CC-Request) to the Diameter server, inquiring if the given
user has the given amount of service units at his disposal. Returns true if the user’s
account covers the amount of units and false otherwise.

public long creditRefund (String username,
long serviceUnits)

Sends a credit-control request (CC-Request) to the Diameter server, requesting to refund
the given user the given amount of service units. Returns a long value containing the
actual amount of units the Diameter server could refund to the user’s account.

4.2.6. Test suite

To complement the implementation of the Diameter WebAuth client and server appli-
cations, a small test suite was also developed. The test suite is used to employ the
WebAuth implementation under controlled conditions. It performs a multitude of Diam-
eter WebAuth operations and evaluate the results. There are a number of test specified
for each of the WebAuth command sets.

The test suite is implemented as a stand-alone application which uses the WebAuth-
Client class to act as a Diameter client. It performs its tests by using the methods the
WebAuthClient class offers to query a Diameter server. However, the expected results of
the requests are known in advance and compared to the actual results the client provides.
By comparing the expected results to the actual results the test suite deems a test as
successfull or as failed. Although there are complete unit testing frameworks available
(e.g. JUnit [39]) for testing software components, developing a small proprietary test
suite was preferred. It was found faster and more flexible to implement than employing a
unit testing framework. For example, the test suite evaluates the time it took the process
the test case by the Diameter system as well. Also it is possible to add performance or
stress tests to the test suite when deemed necessary.?

2 A performance evaluation was not performed within the scope of this thesis (cp. Section 5.3). Therefore
that part of the test suite was not implemented.

73

4. Implementation

An extract of a simple test case is shown below. It tests the basic authentication
mechanism first with valid and then with void credentials. In the first case a successfull
authentication is expected and in the second case a failed one. If either the basic au-
thentication with valid credentials fails or the one with void credentials is successfull the
corresponding test case is considered failed. It also runs tests to make sure, non existent
users are properly rejected and that null values don’t produce unwanted null pointer
exceptions in the implementation.

public void runTests(WebAuthClient client) {
String goodUser = "bob";

String goodPass = "bobssecret";

String badUser = " xxxxxxxxxxx_";

String badPass = " xxxxxxxxxxx "
g __ __

boolean success;
startRunTests ("AA commands verification tests");

success = client.basicAuthentication (goodUser, goodPass);
addResult ("Basic authentication with valid user and valid pass",
success , client.getLastRuntime ());

success = !client.basicAuthentication (goodUser, badPass);
addResult ("Basic authentication with valid user and void pass",
success , client.getLastRuntime ());

success = !client.basicAuthentication(badUser, badPass);
addResult ("Basic authentication with void user and void pass",
success , client.getLastRuntime ());

success = !client.basicAuthentication(null, badPass);
addResult ("Basic authentication with null user and void pass",
success , client.getLastRuntime ());

success = !client.basicAuthentication (goodUser, null);
addResult ("Basic authentication with good user and null pass",
success , client.getLastRuntime ());

stopRunTests ();

The addResult method is used to collect all the results and to print the details if
requested. In the end of a test run a detailed report including a statistic is produced.
The report for the example above looks approximately like this:

74

4. Implementation

Running tests ’AA commands verification tests’:

Basic authentication with valid user and valid pass ... (6ms): PASSED
Basic authentication with valid user and void pass ... (4ms): PASSED
Basic authentication with void user and void pass ... (3ms): PASSED
Basic authentication with null user and void pass ... (6ms): PASSED
Basic authentication with good user and null pass ... (4ms): PASSED

AA commands verification tests statistics:
Number of tests performed: 5
Number of tests passed : 5
Total runtime of tests : 23ms
Average runtime of tests : 4ms

4.3. Web application

To actually deploy the Diameter WebAuth framework in a web application, a small web
blog application called MyBlog was developed. The MyBlog application also serves as a
showcase the WebAuth framework and to validate the Diameter application in Section
5.2.

4.3.1. MyBlog application

As model for the web application a blog was chosen. A blog is a simple website where
messages are posted and usually displayed in a chronological order. The web application,
called MyBlog, implements a number of features which are used to demonstrate the
possibilities of the WebAuth framework. To implement the MyBlog application, the
JavaServer Pages (JSP) technology [56] was chosen. The JSP technology enables the
efficient and quick development of web applications. It also provides access to Java
objects which is used to connect the web application to the Diameter WebAuth client.
The main page of the MyBlog application is shown in Figure 4.5. The messages are
displayed in the center, together with a couple of informations about the person who
created the message and the time of its posting. Right below the title is a navigation bar
which allows access to the subpages of the application.

Each subpage attends to a certain task. For example the login_basic.jsp page
handles user login using the basic authentication. Table 4.2 shows a listing of the im-
plemented pages and their particular tasks. The goal of the MyBlog application is to
showcase the features of the Diameter WebAuth framework. It should be understood as
such a showcase rather than as a serious blog application.

6]

4. Implementation

My Blog

HOME POSET CHARGE MYBLOG MUG FREMILIF LOGoUT

Status:
logged in as
Bob Bobberibob)

Diameter
Oetaber 14, 2007 by Niklas

In geametry, a diameter {Greek words diairo = divide and metro = measure) of a circle is any straight line segment that passes through the
center of the circle and whose endpoints are on the circle. The diameters are the longest chords of the circle.

In more modern usage, the length of a diameter is also called the diameter. In this sense one speaks of the diameter rather than a diameter,
because all diameters of a circle have the same lenath, this being twice the radius.

For a convex shape in the plane, the diameter is defined to be the largest distance that can be formed heteween two opposite parallel lines
tangent to its houndary, and the width is defined to be the smallest such distance. For a curve of constant width such as the Reuleausx triangle,
the width and diameter are the same because all such pairs of parallel tangent lines have the same distance.

Fosted in Facts and Figures

Radius
Oetober2, 2007 by Niklas

In classical geometry, a radius (plural radiiy of a circle or sphere is any line segment fraom its center to its perimeter. By extension, the radius of
a circle or sphere is the length of any such segment. The radius is halfthe diameter. In science and engineering the term radius of curvature is
cammaonly used as a synonym for radius,

hore generally -in geametry, engineering, graph theary, and many other contexts- the radius of something (e.q., a cylinder, a polygon, a graph, or
a mechanical part) is the distance from its center or axis of symmetny to its outermost points. Inthis case, the radius may be mare than half the
diameter

Posted in Facts and Figures

Figure 4.5.: MyBlog: Main page

76

4. Implementation

Table 4.2.: MyBlog: JSP pages overview

JSP Task

index.jsp Shows main page with the posted messages.

buy mug.jsp Allows the user to buy the MyBlog mug.
charge.jsp Allows the user to charge his account with credits.

login basic.jsp User login with basic authentication.
login digest.jsp User login using H'TTP-Digest authentication.
login_form.jsp User login using a custom form and plain text credentials.

logout.jsp User logout.
post.jsp Post a new blog message if the user is authorized to do it.
premium.jsp Allows access to premium content if the user has enough credit.

4.3.2. JSP subpages

Most of the application logic is encapsulated in the JSPs. Besides offering XML-like tags
with predefined functions, the JSP technology allows to mix HTML and Java code. This
makes it well suited for rapidly developing web applications. If a user accesses a JSP
with his web browser, the embedded code is executed by the web server and the result is
send to the web browser. Usually the result is a HTML document that the web browser
than presents to its user. However, a JSP also offers facilities to influence HT'TP headers
send from the web server to the user client. This allows for example to implement a
HTTP digest authentication within a JSP.

The typical design of a MyBlog JSP is as follows. First, variables within session or
application scope are declared. The next section contains Java code with the page logic.
This code component is responsible for processing the request. It examines user input,
conducts the necessary operations and deducts the page result depending on the outcome
of these operations. Processing results and information that needs to be conveyed to the
user are saved in page variables. In the end of the JSP is the HTML code located which
produces the page result in a HTML document. The variables set by the page logic
are used to adjust the output to the processing results. Figure 4.6 for example shows
four different results for the digest login JSP. Depending on the outcome of the page
operation, the user gets a different result document presented.

4.3.3. Helper classes

A JSP is also capable of storing Java objects outside its own page scope. This allows to
maintain statefull objects and to efficiently reuse objects on a higher scope. For example,

7

4. Implementation

My Blog My Blog

HOME LOGIN (BASIC) LOGIN (DIGEST) L HOME LOGIN (BASIC) LOGIM (DIGES

Digest authentication failed! Digest authentication successfull!
You aborted the authentication. Please try again. Welcome back, Bob Bobber.

Click here to continue Zlick here ta cantinue

Digest authentication failed! . L
Digest authentication successfull!

Sorry, we could not authenticate you in the last 4 tries.
Please try again. You are alreaedy authenticated as Bob Bobbel

Click here to continue Click here to continue.

Figure 4.6.: Different results from the login JSP

78

4. Implementation

every JSP in the MyBlog application accesses a user object which is maintained on a
user session scope. This object allows each subpage to set and retrieve user related
information. Such objects are common Java objects which are instantiated from Java
classes.

Besides the User class which represents a single web application user, the MyBlog
application also a class called WebAuthHelper to execute Diameter WebAuth functions.
The WebAuthHelper class bridges the gap between the Diameter WebAuth client class
and the MyBlog web application. It provides the JSP subpages with an interface to the
WebAuthClient class that considers the web application environment. For example, it
provides authentication methods that encode and decode authentication information into
HTTP headers and take on the HT'TP authentication exchange with the user client. As
a result, the JSPs can request authentication from the helper and get a simple true or
false as return value. Handling the Diameter server on the one side and the user client
on the other side is done transparent to the JSP by the WebAuthHelper.

4.4. Summary

This chapter detailed the implementation work done on the Diameter WebAuth frame-
work.

e A Diameter WebAuth server, a Diameter WebAuth client and a web application
were implemented to substantiate the proposal.

e The server implementation uses dedicated classes to handle incoming messages of
the three different command sets:

the ServerAuthHandler class processes authentication and authorization re-
quests (AA-Requests),

the ServerCreditHandler class is responsible for credit-control requests (CC-
Requests) and

the ServerldentityHandler class handles identity information requests (II-Re-
quests).

e The client implementation provides methods for external applications to conve-
niently perform Diameter WebAuth operations. For example, this allows appli-
cations to use the method call basicAuthentication("bob", "secretpass") to
execute a basic authentication via the Diameter WebAuth framework.

79

4. Implementation

e A simple web blog application called MyBlog was implemented to showcase the
framework.

e There is also a small test suite available to test and verify the implementation.

80

5. Evaluation

After presenting design and implementation of the Diameter WebAuth framework in the
previous chapters, the approach will now be evaluated. The first part of the evaluation is
a short verification of the Diameter server and client implementation. It will be followed
by a validation using the requirements that were posed on the framework during the
design phase. Then a couple of considerations concerning the overall performance of the
framework will be made. And finally the Diameter WebAuth proposal will be compared
to other web-based identity management approaches.

5.1. Implementation verification

During the implementation and after its completion, the test suite (cp. Section 4.2.6)
was used for continuous testing and verification. The intention of software verification
is to ensure that the developed software satisfies it requirements. This means that the
software should behave as described in the specifications [62]. The software operations
should yield the specified results and the software should run without unexpected errors
or exceptions.

The test suite contains numerous tests that compare the results of different methods
in the Diameter WebAuth client implementation. This is a dynamic verification ap-
proach and can be considered an integration test [3, 62|. Integration tests cover multiple
modules of a system, in this case, several components of the Diameter client and server
implementation. For example, the test cases for a particular command set, address the
encapsulating client methods, the particular message implementation, the client message
handling subsystem, the transport system, the server message handling system and the
particular server backend functions.

The finished Diameter WebAuth implementation passed all the conducted verification
tests. An example of the result statistics is shown in Figure 5.1.

81

5. Evaluation

AA commands verification tests statistics:
Number of tests performed: 14
Number of tests passed : 14
Total runtime of tests : 65ms
Average runtime of tests : 4ms

CC commands verification tests statistics:
Number of tests performed: 12
Number of tests passed : 12
Total runtime of tests : 68ms
Average runtime of tests : bms

IT commands verification tests statistics:
Number of tests performed: 15
Number of tests passed : 15
Total runtime of tests : 7TTms
Average runtime of tests : bms

Figure 5.1.: Verification test result statistics

5.2. Design validation

Validation means to establish that a software system meets its requirements and fulfils
its intended purpose (cp. [62]). As basis for the validation of the Diameter WebAuth
the framework, the use cases specified in the design phase (cp. Section 3.1.2) are chosen.
Because those use case were a starting point in the initial design of the framework, it
makes sense to compare the implementation results against them. In this section, there-
fore, a number of selected use cases, covering each of the Diameter WebAuth command
sets, will be played through. This way it can be established that the framework indeed
meets the requirements and purposes which were underlying to its design.

5.2.1. Authentication and authorization

The use cases involved in the authentication and authorization demonstration are:
e “A web site wants to authenticate a user.”
e “A web site wants to authorize a user for a specific service.”

The first exercise for the MyBlog application is to authenticate a user in order to
establish his identity. It is assumed, that the user is known to the identity provider

82

5. Evaluation

My Blog

y \
HOME LOGIN (BASIC) LOGIN (DIGEST) LOGIN (FORM) MYBLOG MUG FREMILIM

Status:
not logged in

Basic authentication successfull!

Welcome back, Bob Bobber.

Click here to continue.

Figure 5.2.: MyBlog: Login successfull

(respectively the Diameter server) and that the user supplies his correct credentials. The
Diameter WebAuth application provides means to perform a basic authentication or a
http digest authentication via the Diameter protocol. Basic authentication means that
a cleartext password is checked against the username, while the digest authentication
employs a one-way hash function to secure the clear text credentials. The WebAuth
demo application uses the WebAuth client on its login page to access the Diameter
authentication facilities. When a user accesses the login page, he gets promted for his
username and password. After the user entered his credentials, the web application passes
them to the Diameter client. The client uses the Diameter AA commands to perform
the authentication and returns a true or false value to the web application. As a result
the web application knows whether the user could be authenticated or not and can finish
processing the login page accordingly. Figure 5.2 shows the composed login page in case
of a successfull authentication.!

After the user is identified as “bob,” he wants to make a new post in the blog. The
MyBlog application, however, poses some restrictions on the users allowed to post new
messages. Only a number of approved users are allowed to do so?. The web application

!The personalized greeting is the result of a WebAuth identity information operation, which is covered
in another use case (see below).
*How a user gets approved to post is outside the scope of this demonstration.

83

5. Evaluation

provider agreed with the identity provider to establish the service “2” within the standard
service context as classification for users that are allowed to post on the blog. The web
application, therefore, attempts to authorize the user “bob” for the service with the
identifier “2” using the authorize method of the Diameter WebAuth client (cp. Section
4.2.5). The method returns a true value if the user is authorized for the “make blog
posts” service in which case the application shows the post page. If the user is not
authorized, an error page explaining the situation is shown.

5.2.2. Accounting

The use cases involved in the accounting demonstration are:
e “A web site wants to charge a user for a specific service.”
e “A web site wants to credit a user for a specific service.”
e “A web site wants to check if a user has a certain credit.”

To showcase the credit-control features of the Diameter WebAuth framework, the
the MyBlog web application sells the MyBlog mug as merchandise. On the “MyBlog
Mug” page, shown in Figure 5.3, a user can order any number of MyBlog mugs. Since
the prototype implementation only supports service specific units, one MyBlog mug is
charged with 1500 “credits.” The processing of the transaction is handled through the
Diameter client, that sends a credit-control request to the Diameter server. The request
contains a credit-control event request for the direct debit event and the value of requested
service units. After the servers credit-control backend handled the request, the Diameter
server will send a CC-Answer back to the WebAuth client which contains the amount
of service units that actually could be charged to the user’s account. If the the amount
that was granted is the same amount that was requested, the number of ordered mugs is
sold to the user. If it isn’t, the application tries to rollback the transaction by refunding
the amount that was granted. In any case, the user gets an adequate response.

To charge an account, the user can use the charge page. For the sake of the showcase
implementation, this page just lets the user charge a certain amount of service units
to his account. How the identity provider clears the charge with the user in the end,
doesn’t concern the web application provider and is not reconsidered here. Access to the
“premium content” of the web application is intended only for user that have more than
10.000 service units available on their credit account. The web application, therefore,
conducts a Diameter WebAuth balance check for 10.000 requested service units before it
grants access to a user. Whatever the premium content may be, is not further considered
in the showcase application.

84

5. Evaluation

My Blog

HOME POST CHARGE MYBLOG MUG PREMILM LOGOUT

Status:
logged in as
Bob Bobber (bab)

Buy your own MyBlog mug! L
Cne MyBlog mug costs 1.500 credits. How many do you want to buy?

lwant to order mugs

Figure 5.3.: MyBlog: Buy mug page

85

5. Evaluation

5.2.3. ldentity attributes

The use cases involved in the identity attributes demonstration are:
e “A web site wants to retrieve user specific identity data.”
e “A web site wants to store user specific identity data.”

Whenever a user makes a new blog post, the web application includes his full name
and his email address in the post. Those identity attributes are fetched from the iden-
tity provider using a Diameter WebAuth identity information query. It is assumed,
that the web application provider and the identity provider have agreed to use a pri-
vate identity information scheme that uses simple key-value pairs. The schema is desig-
nated "myblog.key-value-pairs@id-provider.example.com" and specifies that an Identity-
Attribute-Request AVP has to contain a keyword and is answered with an Identity-
Attribute-Value AVP that contains the corresponding value. For example the query for
“lastname” will fetch the value “Bobber” for the user “bob.” Using this simple identity
information scheme, the web application fetches the first name, the last name and the
email address for every user when he makes a post. The values are stored and displayed
together with the posting as shown in Figure 5.4.

5.3. Performance considerations

A dedicated performance evaluation is not intended for the Diameter WebAuth imple-
mentation. There are a number of reasons for that. First of all, the implementation is
only a prototype implementation. It is intended as proof of concept work for demonstrat-
ing the proposed approach and thus was not implemented with an objective of optimized
performance. Second, the implementation uses an external underlying Diameter imple-
mentation (cp. Section 4.2.1) which forms the major source of performance limitation,
and the Diameter WebAuth application is just a slight add-on upon this implementation
from the performance perspective. Third, performance does not seem to be an important
issue in regards to identity management. Since it is a human user that is usually the
subject of identity operations such as authentication or an automated login, the tolera-
ble delay is comparatively high. Certainly, the approach itself should be scalable to be
able to handle any number of concurrent users. In case of the Diameter protocol, this
assumption is considered as true based on the fact that Diameter is widely deployed,
including in large networks.

Furthermore, other identity management approaches introduced in this thesis are in-
tended to operate in networks too. They all use message transfers over IP networks and

86

5. Evaluation

My Blog

HCOME FOST CHARGE MYBLOG MUG PREMILIM LOGOUT

Status:
logged in as
Bob Bobberibob)

Add a new Post

Poster name: Bob Bobher
Poster email: bobb@example.com
Post title: |

Post text:

catopory

Figure 5.4.: MyBlog: Posting form with filled in identity information

87

5. Evaluation

don’t operate locally without a network. Therefore, network charges and restrictions
apply to all of them, including Diameter WebAuth. For future work regarding Diameter
WebAuth, however, it might be interesting to compare different approaches with regard
to some performance metrics like the number of message exchanges, the average data
transfered or the number of user interactions necessary to process a certain operation.

5.4. Feature comparison

An important demand made on the design of Diameter WebAuth was that its features
will be comparable with other web-based approaches to identity management. This
section will now evaluate the features of Diameter WebAuth using the same criteria that
were applied during the evaluation of the approaches in Section 2.6. The result of this
evaluation will be used to directly compare Diameter WebAuth to the approaches to
identity management in web applications introduced in Section 2.

End user authentication The Diameter WebAuth specification covers end user authen-
tication using the HT'TP authentication methods specified by RFC 2617. Those are basic
authentication using cleartext credentials and digest authentication which uses a one-way
hash function to protect the user’s password. By implementing those methods, Diam-
eter WebAuth provides username/password authentication which is propably the most
common method used by web applications at the moment. HTTP digest authentica-
tion furthermore allows safe handling of the user’s password even by the Diameter client
without exposing its cleartext value.

As shown by the prototype implementation, Diameter WebAuth provides direct au-
thentication support for web applications using either browser provided mechanisms
(HTTP basic and digest access authentication) or form-based authentication. The later
method allows the web application to use a completely customizeable login page®. Fur-
thermore, Diameter WebAuth can be extended without any difficulty to support various
other authentication methods by updating the specification.

Authorization Service differentiated user authentication is provided by Diameter Web-
Auth in order for web applications to support areas with different access restrictions. The
particular service identifiers are freely allocable between the Diameter server provider
and the web application provider. This allows for user authentication as fine grained as
needed by the web application.

3Opposite to http digest access authentication, however, form-based authentication does not protect
the password from exposure to the web application.

88

5. Evaluation

Single sign-on/sign-out Although single sign-on/sign-out is not implicitly supported
by Diameter WebAuth, the HT'TP digest access authentication scheme used, allows to
define a protection space which can span multiple servers. This mechanism allows the
end user client to determine the set of URIs for which the same authentication infor-
mation may be used [18, Section 3.2.1.]. This can be used by the Diameter server to
implement a crude single sign-on functionality for the Diameter clients it is responsible
for. Also, HT'TP authentication allows for the authentication header to be included in
every request to a resource within the protection space. If a client omits the header,
the application can understand this (if necessary after issuing another authentication
request) as a logout. This would allow for a user client-based support of single sign-on
and sign-out. A system immanent single sign-on/sign-out functionality can be realized
with the support of another Diameter application which maybe the subject of future
work (cp. Section 7).

Accounting Basic credit related functions are available in Diameter WebAuth as credit
control operations, carried over from the Diameter Credit-Control application. They
allow a web application to charge and refund its users with currency or application
related service units. If and to what extend the Diameter service provider is taking
monetary responsibilities for its users needs to be arranged between the web application
provider and the Diameter server provider.

User client support The Diameter WebAuth application does not make any fundamen-
tal demands on the end user client. Only the HT'TP authentication methods used by
Diameter WebAuth need to be supported by the client. But first of all, they are more re-
lated to the HT'TP protocol which support is a basic requirement for every web browser.
This means, that Diameter WebAuth rather uses basic features of its end user’s service
protocol than expecting exceptional and incoherent traits. And second of all, even in the
case HT'TP authentication is not available in the end user’s client, Diameter WebAuth
can fallback on form-based authentication.

Technologies Since Diameter WebAuth is implemented on top of the Diameter Base
Protocol, it employes the same technologies. Those are IP-based protocols like TCP,
SCTP, TLS and IPSec. It is also valid to list HI'TP as dependant technologies, because
the authentication part of Diameter WebAuth relies on HT'TP mechanisms.

Identity attributes Identity attribute exchange is supported by Diameter WebAuth by
the implementation of the Identity-Information commands (cp. Sections 3.2.3, 3.3.5

89

5. Evaluation

and 3.3.6). They allow a web application to query the Diameter server for attributes
describing a persons identity. The extend of the available attributes, their format and
the query/response syntax to exchange them is not fixed and needs to be predefined
between the web application provider and the Diameter server provider. This allows to
use virtually any identity information schema with Diameter WebAuth.

Maturity level Although Diameter WebAuth itself is a new approach to identity man-
agement, it employs the Diameter protocol. The Diameter protocol is well established
and mature. This means, that although the Diameter WebAuth framework can only be
attributed a very low maturity level at the moment, it can be expected that its matu-
rity can be advanced comparatively fast. This results from the facts that Diameter is
a common technology and the WebAuth application is designed with regards to easy
implementation.

Primary focus Diameter WebAuth focusses on bringing network-based AAA mecha-
nisms into the realm of web applications. The intention is to provide means for web
applications to use AAA infrastructures for identity management purposes. This is done
by adapting network-based technology to be used in the application layer of web envi-
ronments. Furthermore, the identity management aspect is emphasized by the means to
transport identity information in addition to the classical AAA tasks.

5.4.1. Results

Table 5.1 shows a feature comparison of Diameter WebAuth with web-based identity
management approaches. The result of that comparison is that Diameter WebAuth is
able to offer most of the features that can be demanded from an identity management
approach. Solely the support for single sign-on/sign-out can be enhanced, compared to
solutions like OpenlD and Liberty. However, OpenlD and Liberty were designed with
a special focus on single sign-on mechanisms. Compared to the Microsoft CardSpace
technology, Diameter WebAuth does not rely on the support of the user client. This
makes it easier to deploy and to maintain.

Because Diameter WebAuth also explicitly covers end user authentication it can be
considered much more versatile than the OpenlD and Liberty approach. Unlike those
approaches, Diameter WebAuth can be used as an authentication backend. This makes it
viable in scenarios where no identity management but local authentication is the primary
task to accomplish. For example, in the case where a company-internal webserver should
be enabled to authenticate users against he existing AAA infrastructure. The authenti-

90

5. Evaluation

Table 5.1.: Feature comparison for identity management systems with Diameter WebAuth

Feature OpenlD Liberty CardSpace Diameter WebAuth
Authentication no no yes yes
Authorization no yes yes yes
Single sign-on/ yes/ yes/ no/ depends(!)

sign-out no yes no depends(V)
Accounting no no no yes
Requires user

client support no no yes no
Technologies HTTP SAML XML IP, HTTP
Identity attributes no yes yes yes
Maturity medium medium low low(2)
Primary Decentralized Trust Authenti- AAA

focus identities relations cation + identity

(Web) (Web) (Web) information

(1) HTTP Digest Authentication can provide some crude SSO mechanisms.
2) Diameter WebAuth is based on the Diameter protocol which is well established and
mature.

cation capabilities of Diameter WebAuth also allow for it to be employed to complement
identity management approaches that do not cover authentication.

Unique selling points of Diameter WebAuth are that, because it superimposes on the
Diameter protocol, it seamlessly integrates in existing AAA infrastructures and that it
supports accounting mechanisms. While the later might not yet be excessively interesting
for most web applications, the utilization of existing AAA structures, especially existing
Diameter servers, brings a number of advantages. It reduces expenses and maintenace
effort, avoids data redundancies or discrepancies and allows to consolidate know-how.
Especially for organizations that provide different access controlled services, this makes
Diameter WebAuth a very attractive approach to expand existing network-based identity
management to web applications.

5.5. Summary

In this chapter the previous work done in the thesis was evaluated.

e The implementation of the Diameter WebAuth application was verified using a
dedicated test suite.

91

5. Evaluation

e The design of the Diameter WebAuth framework was validated on the basis of
specified use cases using the MyBlog web application.

— It was shown how a web application can use Diameter WebAuth to authenti-
cate and authorize its users.

— The credit-control facilities were demonstrated by means of a merchandise sale
included in the MyBlog application.

— Throughout the application were identity information used to personalize the
content.

e Performance optimization was not an objective of the implementation and a per-
formance evaluation was, therefore, not made.

e The Diameter WebAuth framework was compared to other approaches for identity
management in web applications.

— The result was that Diameter WebAuth is compareable regarding the features
to other approaches to identity management.

— In addition, the proposal includes end user authentication specifications and
accounting facilities.

— Opposite to approaches like OpenlD or the Liberty Alliance project, Diameter
WebAuth, therefore, can be employed in authentication backend systems as
well.

92

6. Conclusion

The more personal and personalized information are available on the Internet, especially
the World Wide Web, the more popular identity management solutions will become.
They offer the application providers a convenient way to handle user authentication
without local authentication databases and they avoid tedious sign-up procedures as en-
trance barriers to their services. The users benefit from simplified login procedures with
one set of access credentials and having the identity provider as trustworthy party to
govern their account data. The proposed Diameter WebAuth is an AAA-based iden-
tity management framework that has been developed with the same requirements that
are made to web-based solutions. It closes the gap between network authentication and
application authentication by effectively bringing network-based access control concepts
to the application layer. WebAuth it is based on the well established and mature Di-
ameter protocol. It, therefore, benefits from the propagation of Diameter setups and
the general experience with the protocol in terms of deployability implementability and
maintainability.

The work presented in this thesis is suited to enable any Diameter system to be part
of an identity management system. Especially network providers, which already operate
Diameter setups can easily extend their systems to offer more services and consolidate
their infrastructure respectively. Particularly in closed networks, Diameter WebAuth can
also be established as common authentication method to implement a central and secure
authentication system that is not limited to the web-environment. Since not all identity
management solutions include authentication protocols, even identity providers offering
service for other approaches, like OpenlD or the Liberty Alliance, can employ Diameter
servers for their backend authentication using the Diameter WebAuth proposal.

Authentication and authorization

Diameter WebAuth implements three functional facilities: authentication and autho-
rization, credit control and identity attributes. The authentication and authorization
functions of Diameter WebAuth include end user to identity provider authentication as
well as the identity provider to application provider confirmation process about a suc-
cessfull authentication. This distinguishes it from other web-based identity management

93

6. Conclusion

solutions that only cover one of those two aspects.

As result, Diameter WebAuth is a more holistic approach to identity management.
More importantly it gives Diameter WebAuth the ability not only to substitute other
approaches but also to complement them. For instance, Diameter WebAuth can be
deployed as mechanism by OpenlD identity providers to authenticate OpenlD users.
Also, it should be possible to extend Diameter WebAuth to support Microsoft CardSpace
as an authentication method. This extent makes Diameter WebAuth a very versatile
employable approach.

Credit control

In addition to the network-based access control, Diameter WebAuth also brings network-
based credit control mechanisms to the web application layer which further unifies those
two layers. The credit control functions allows to conduct charging operations over
the same infrastructure that is used for identity management. This makes it easy to
offer payable services or products even for application providers that only sell services or
products in small quantities sporadicly. If a web application supports Diameter WebAuth
it virtually takes no additional effort to also employ it for credit operations.

For the end user, credit control operations over the Diameter WebAuth framework
have the advantage that he doesn’t need another provider for his financial transactions.
A fundamental idea of identity management is to make handling of identity aspects easier
by integration. Diameter WebAuth consistently expands this concept to also include
financial transactions to user’s identities.

Identity attributes

Authentication and authorization as well as credit control operations in Diameter Web-
Auth are concepts that originate from the network layer and are adapted to the appli-
cation layer. Identity attributes on the other hand, are a classical identity management
concept that emerged from the application layer. Undoubtful, those attributes are an
important aspect in identity management to provide further information about a person’s
identity. It, therefore, is not just an end in itself to support them in Diameter WebAuth.
By doing so, however, the identity attribute facilities are made generally available on
Diameter infrastructures. This means that Diameter WebAuth not only brings network-
based functions into the application layer but also adapts concepts from the application
layer to the network layer. Possible applications are to personalize network access control
mechanisms or to transfer personal information like address books or schedules to devices
that are authenticated using the Diameter protocol.

94

7. Future work

The work done in this thesis has initiated a number of topics that are closely related to
the thesis but couldn’t be explored further due to time constrains and the desire to hold
up a primary focus. They are well suited to further advance the work in the scope of
this thesis or to complement it.

Extending authentication capabilities

The integration of end user authentication capabilities is a property of Diameter Web-
Auth that distinguishes it from other approaches. The reason, end user authentication
is included in the proposal, is that in a Diameter WebAuth setup the authentication
credentials have to be transported using the Diameter protocol in order to reach the
Diameter server. The details of the authentication operation, therefore, need to be speci-
fied in order to ensure interoperability between Diameter client and server. Furthermore,
the specification of the supported authentication methods helps to choose those methods
that are suited for the web environment.

Since the authentication capabilities are such an important part of Diameter Web-
Auth, further work should consider to extend these capabilities. Primarily this means
to specify and implement additional authentication methods. Very suitable for that are
authentication methods that are already widely supported by web browsers, for instance
user certificate-based authentication. It also seems worthwile to explore the possibilities
to integrate new authentication methods like Microsoft CardSpace. To enhance the avail-
able authentication methods it might be worth considering to add a number of AVPs to
the specification to allow for some advanced features like the support of CAPTCHAs' or
pre- and post-authentication messages. Especially in setups that use form-based authen-
tication such features can provide additional functionality to make Diameter WebAuth
more suitable for such scenarios.

1“«CAPTCHA? is a contrived acronym for “Completely Automated Public Turing test to tell Computers
and Humans Apart” [12]. Very common are small pictures containing a confirmation code that cannot
easily be read by a computer.

95

7. Future work

User feedback channel

A disadvantage, Diameter WebAuth has compared to several other identity management
approaches is that it does not provide a direct communication channel between the
identity provider (Diameter server) and the end user. All communication is relayed
through the Diameter client. This means that the Diameter server cannot directly get
confirmation from or send feedback to the user. Having such a feedback channel between
the user and the Diameter server would most likely enhance security, privacy and overall
suitability of Diameter WebAuth. The channel would allow to inform the user of ongoing
operations or to request explicit user approval.

An objective of future work could be to establish the requirements for such a direct
feedback channel and to develop a proposal to implement it. If end-to-end security
and confidentiality can be achieved for this feedback channel, it might even be possible
to use it for user authentication. This could effectively free Diameter WebAuth from
all restrictions concerning authentication schemes and let the Diameter server handle
authentication directly.

Single sign-on

As stated in Section 2.6, single sign-on is a valuable feature for identity management
systems in general. The Diameter protocol on the whole lacks of single sign-on facilities.
Future work, therefore, consider to develop a Diameter single sign-on solution. Either
specifically for web environments or with a more general pretense. In the later case, a
5SSO solution could advance the Diameter protocol at large.

Performance evaluation of identity management approaches

Evaluating the performance of identity management approaches for web applications
is not particularly straightforward. The approaches have different capabilities and use
different techniques. Also the quantity to be measured is not implicitly clear. Is packet
size, the number of message exchanges, server response times or the level and number
of user interactions decisive? As a matter of fact, the issue whether this even is an
interesting topic for future work needs to be assessed more extensive. It is feasible that
an appropriate performance comparison of different approaches just cannot be done,
because there is not enough common ground between them.

96

7. Future work

HTTP authentication

RFC 2617 which specifies the HT'TP basic and digest access authentication methods
dates from June 1999. Today other authentication methods, especially the HTML form-
based authentication seems more and more popular. The biggest advantage of form-based
authentication is that it allows unlimited adaptability of the login mask presented to the
user. Its biggest disadvantage is that the login credentials are transmitted in cleartext.
The HT'TP digest authentication on the other hand is exactly reversed: it does not allow
for any customization of its layout whatsoever but secures the authentication credentials.

Besides this most obvious flaw, its unadaptable layout, HT'TP authentication has a
number of additional problems that could be the subject of future work. For example,
RFC 2617 does not specify any kind of logout facility or how to handle usernames or
passwords in different character sets. Also it maybe worth to explore additional security
considertations against phishing attacks or man-in-the-middle attacks. Especially the
integration of some kind of server authentication seems to be interesting to solve a number
of security issues with HTTP authentication. Last but not least, the behavior of most
web browsers not to distinguish between the inherently insecure basic authentication
and the reasonably more secure digest authentication is a security concern that should
be addressed. Different security settings, perhaps even allowing the user to disable basic
authentication under certain circumstances (for example, no SSL secure connection),
and a noticeable, visible distinction between the two methods seem suited to increase the
security of HT'TP authentication on the client side.

97

Bibliography

1]

2]

(6]

7]

19]

B. Aboba, P. Calhoun, S. Glass, T. Hiller, P. McCann, H. Shiino, G. Zorn,

G. Dommety, C.Perkin, B.Pati, D.Mitto, S.Mannin, M.Beadle, P.Wals, X.Che,
S.Sivalingham, A.Hamee, M.Munso, S.Jacob, B.Li, B.Hirschman, R.Hsu, Y.Xu,
E.Campell, S.Baba, and E.Jaques. Criteria for Evaluating AAA Protocols for
Network Access. RFC 2989 (Informational), November 2000. URL http:
//www.ietf.org/rfc/rfc2989.txt.

B. Aboba, M. Beadles, J. Arkko, and P. Eronen. The Network Access Identifier.
RFC 4282 (Proposed Standard), December 2005. URL http://wuw.ietf.org/
rfc/rfc4282.txt.

Alain Abran, James W. Moore, Pierre Bourque, Robert Dupuis, and Leonard L.
Tripp. Guide to the Software Engineering Body of Knowledge (SWEBOK). TEEE,
2004.

bandit-project.org. Welcome to Bandit - Bandit-project.org. URL http://www.
bandit-project.org/index.php/Welcome_to_Bandit.

Marco Barulli and Giulio Cesare. Clipperz Crypto Library, 2007. URL http:
//code.google.com/p/clipperz/.

Alan Berg and Bas Toeter. Single Sign on and Single Sign Off in a non homoge-
neous Portal front ended environment, 2005.

Stefan Brands. The Identity Corner - The problem(s) with OpenID. URL http:
//www.idcorner.org/7p=161.

P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter Base
Protocol. RFC 3588 (Proposed Standard), September 2003. URL http://wuw.
ietf.org/rfc/rfc3588.txt.

P. Calhoun, T. Johansson, C. Perkins, T. Hiller, and P. McCann. Diameter Mobile
[Pv4 Application. RFC 4004 (Proposed Standard), August 2005. URL http:
//www.ietf.org/rfc/rfc4004.txt.

98

http://www.ietf.org/rfc/rfc2989.txt
http://www.ietf.org/rfc/rfc2989.txt
http://www.ietf.org/rfc/rfc4282.txt
http://www.ietf.org/rfc/rfc4282.txt
http://www.bandit-project.org/index.php/Welcome_to_Bandit
http://www.bandit-project.org/index.php/Welcome_to_Bandit
http://code.google.com/p/clipperz/
http://code.google.com/p/clipperz/
http://www.idcorner.org/?p=161
http://www.idcorner.org/?p=161
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc4004.txt
http://www.ietf.org/rfc/rfc4004.txt

Bibliography

[10]

[18]

[19]

P. Calhoun, G. Zorn, D. Spence, and D. Mitton. Diameter Network Access Server
Application. RFC 4005 (Proposed Standard), August 2005. URL http://www.
ietf.org/rfc/rfc4005.txt.

Scott Cantor, Jeff Hodges, John Kemp, and Peter Thompson. Liberty ID-FF Ar-
chitecture Overview, 2005.

Carnegie Mellon University. CAPTCHA: Telling Humans and Computers Apart
Automatically, 2000-2007. URL http://www.captcha.net/.

M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4revl.
RFC 3501 (Proposed Standard), March 2003. URL http://www.ietf.org/rfc/
rfc3501.txt. Updated by RFCs 4466, 4469, 4551, 5032.

D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF.
RFC 4234 (Draft Standard), October 2005. URL http://www.ietf.org/rfc/
rfc4234.txt.

C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA
Architecture. RFC 2903 (Experimental), August 2000. URL http://www.ietf.
org/rfc/rfc2903.txt.

V. Fajardo, T. Asveren, H. Tschofenig, G. McGregor, and J. Loughney. Diame-
ter Applications Design Guidelines, October 2007. URL http://www.ietf.org/
internet-drafts/draft-ietf-dime-app-design-guide-04.txt.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616 (Draft Stan-
dard), June 1999. URL http://www.ietf.org/rfc/rfc2616.txt. Updated by
RFC 2817.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HT'TP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), June 1999. URL http://www.ietf.org/rfc/rfc2617.
txt.

M. Garcia-Martin, M. Belinchon, M. Pallares-Lopez, C. Canales-Valenzuela,
and K. Tammi. Diameter Session Initiation Protocol (SIP) Application. RFC
4740 (Proposed Standard), November 2006. URL http://www.ietf.org/rfc/
rfc4740.txt.

99

http://www.ietf.org/rfc/rfc4005.txt
http://www.ietf.org/rfc/rfc4005.txt
http://www.captcha.net/
http://www.ietf.org/rfc/rfc3501.txt
http://www.ietf.org/rfc/rfc3501.txt
http://www.ietf.org/rfc/rfc4234.txt
http://www.ietf.org/rfc/rfc4234.txt
http://www.ietf.org/rfc/rfc2903.txt
http://www.ietf.org/rfc/rfc2903.txt
http://www.ietf.org/internet-drafts/draft-ietf-dime-app-design-guide-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-dime-app-design-guide-04.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc4740.txt
http://www.ietf.org/rfc/rfc4740.txt

Bibliography

[20]

[21]

[22]

Jason Garman. Single Sign-on for Your Web Applications with Apache and Ker-
beros, November 2003. URL http://www.onlamp.com/pub/a/onlamp/2003/09/
11/kerberos.html.

Michael Graves. And then there were none - Zero Passwords with Client
Certificates, April 2007. URL http://janrain.com/blog/2007/04/20/
and-then-there-were-none-zero-passwords-with-client-certificates/.

H. Hakala, L. Mattila, J-P. Koskinen, M. Stura, and J. Loughney. Diameter
Credit-Control Application. RFC 4006 (Proposed Standard), August 2005. URL
http://wuw.ietf.org/rfc/rfc4006.txt.

Marit Hansen. User-Controlled Identity Management the Future of Privacy. In
Identity in a Networked World. FidiS consortium, August 2006.

Marit Hansen, Henry Krasemann, Christian Krause, Martin Rost, and Dr. Ric-
cardo Genghini. Identity Management Systems (IMS): Identification and Compar-
ison Study, 2003.

Dick Hardt, Johnny Bufu, and Josh Hoyt. OpenID Attribute Exchange 1.0 - Draft
07.

S. Josefsson. The Basel6, Base32, and Base64 Data Encodings. RFC 4648 (Pro-
posed Standard), October 2006. URL http://www.ietf.org/rfc/rfc4648.txt.

Sampo Kellomék and Rob Lockhart. Liberty ID-SIS Personal Profile Service
Specication. Liberty Alliance ID-SIS 1.0 Specification, November 2006. URL
http://www.projectliberty.org/liberty/content/download/1028/7146/
file/liberty-idsis-pp-vl.1.pdf.

Daniel Kouril. Kerberos Module for Apache, . URL http://modauthkerb.
sourceforge.net/.

Daniel Kouril. Negotiateauth Project: HI'TP Negotiate authentication for
Mozilla-based browsers, . URL http://negotiateauth.mozdev.org/.

Ben Laurie. OpenlD: Phishing Heaven, January 2007. URL http://www.links.
org/7p=187.

E. Stewart Lee. Essays about Computer Security, 1999. URL http://www.cl.
cam.ac.uk/ “mgk25/lee-essays.pdf.

100

http://www.onlamp.com/pub/a/onlamp/2003/09/11/kerberos.html
http://www.onlamp.com/pub/a/onlamp/2003/09/11/kerberos.html
http://janrain.com/blog/2007/04/20/and-then-there-were-none-zero-passwords-with-client-certificates/
http://janrain.com/blog/2007/04/20/and-then-there-were-none-zero-passwords-with-client-certificates/
http://www.ietf.org/rfc/rfc4006.txt
http://www.ietf.org/rfc/rfc4648.txt
http://www.projectliberty.org/liberty/content/download/1028/7146/file/liberty-idsis-pp-v1.1.pdf
http://www.projectliberty.org/liberty/content/download/1028/7146/file/liberty-idsis-pp-v1.1.pdf
http://modauthkerb.sourceforge.net/
http://modauthkerb.sourceforge.net/
http://negotiateauth.mozdev.org/
http://www.links.org/?p=187
http://www.links.org/?p=187
http://www.cl.cam.ac.uk/~mgk25/lee-essays.pdf
http://www.cl.cam.ac.uk/~mgk25/lee-essays.pdf

Bibliography

[32]

Microsoft Corporation. .NET Framework Developer’s Guide: Role-based Security,
2007. URL http://msdn2.microsoft.com/en-us/library/52kd59t0(VS.71)
.aspx.

Microsoft Corporation. Windows CardSpace, 2006. URL http://cardspace.
netfx3.com/.

Microsoft Corporation. Windows Vista Technical Articles - Introducing Win-
dows CardSpace, 2007. URL http://msdn2.microsoft.com/en-us/library/
aa480189. aspx.

Joaquin Miller. Yadis Specification Version 1.0, March 2006. URL http://yadis.
org/papers/yadis-v1.0.pdf.

National E-Health Transition Authority Ltd. Identity Management - Glossary of
Terms (Version 1.0). Public Release, August 2007. URL http://www.nehta.gov.
au/index.php?option=com_docman\&task=doc_download’&gid=320\&Itemid=
139.

C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network Au-
thentication Service (V5). RFC 4120 (Proposed Standard), July 2005. URL
http://wuw.ietf.org/rfc/rfc4120.txt. Updated by RFCs 4537, 5021.

OASIS. OASIS Security Services (SAML) TC, 1993-2007. URL http://wuw.

oasis-open.org/committees/tc_home.php?wg_abbrev=security.

Object Mentor. JUnit.org: Resources for Test Driven Development, September
2007. URL http://www.junit.org/.

Open Diameter Project. Open Diameter, 2007. URL http://opendiameter.org/.
openid.net. OpenlID. URL http://openid.net/.

Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-based access control on
the web. ACM Trans. Inf. Syst. Secur., 4(1):37-71, 2001. ISSN 1094-9224. doi:
http://doi.acm.org/10.1145/383775.383777.

PRIME Project. PRIME - Privacy and Identity Management for Europe, 2007.
URL https://www.prime-project.eu/.

projectliberty.org. Liberty Specs Tutorial. URL http://www.projectliberty.
org/liberty/content/download/423/2832/file/tutorialv2.pdf.

101

http://msdn2.microsoft.com/en-us/library/52kd59t0(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/52kd59t0(VS.71).aspx
http://cardspace.netfx3.com/
http://cardspace.netfx3.com/
http://msdn2.microsoft.com/en-us/library/aa480189.aspx
http://msdn2.microsoft.com/en-us/library/aa480189.aspx
http://yadis.org/papers/yadis-v1.0.pdf
http://yadis.org/papers/yadis-v1.0.pdf
http://www.nehta.gov.au/index.php?option=com_docman&task=doc_download% &gid=320&Itemid=139
http://www.nehta.gov.au/index.php?option=com_docman&task=doc_download% &gid=320&Itemid=139
http://www.nehta.gov.au/index.php?option=com_docman&task=doc_download% &gid=320&Itemid=139
http://www.ietf.org/rfc/rfc4120.txt
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.junit.org/
http://opendiameter.org/
http://openid.net/
https://www.prime-project.eu/
http://www.projectliberty.org/liberty/content/download/423/2832/file/tutorialv2.pdf
http://www.projectliberty.org/liberty/content/download/423/2832/file/tutorialv2.pdf

Bibliography

[45]

[46]

[52]

[53]

[54]

[55]

projectliberty.org. The Liberty Alliance, October 2007. URL http://www.
projectliberty.org/.

Nick Ragouzis, John Hughes, Rob Philpott, and Eve Maler. Security Assertion
Markup Language 2 (SAML) V2.0 Technical Overview. Working Draft 10, Octo-
ber 2006.

D. Recordon and B. Fitzpatrick. OpenID Authentication 1.1. Final-
ized OpenlD Specification, May 2006. URL http://openid.net/specs/
openid-authentication-1_1.html.

E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. URL http:
//www.ietf.org/rfc/rfc2818.txt.

Joyce K. Reynolds and Robert Braden. Instructions to Request for Comments
(RFC) Authors. Internet-Draft, August 2004. URL ftp://ftp.rfc-editor.org/
in-notes/rfc-editor/instructions2authors.txt.

C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication Dial
In User Service (RADIUS). RFC 2865 (Draft Standard), June 2000. URL http:
//www.ietf.org/rfc/rfc2865.txt. Updated by RFCs 2868, 3575.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Pro-
posed Standard), June 2002. URL http://www.ietf.org/rfc/rfc3261.txt.
Updated by RFCs 3265, 3853, 4320, 4916.

Vishal Sharma. Secure Authentication in Web Based J2EE/JEE Devel-
opment, October 2007. URL http://entips.blogspot.com/2007/10/
secure-authentication-in-web-based.html.

Marco Slot. Beginners guide to OpenlD phishing. URL http://marcoslot.net/
apps/openid/.

specs@openid.net. OpenlD Authentication 2.0 - Draft 12, August 2007. URL
http://openid.net/specs/openid-authentication-2_0-12.html.

B. Sterman, D. Sadolevsky, D. Schwartz, D. Williams, and W. Beck. RADIUS
Extension for Digest Authentication. RFC 4590 (Proposed Standard), July 2006.
URL http://www.ietf.org/rfc/rfc4590.txt.

102

http://www.projectliberty.org/
http://www.projectliberty.org/
http://openid.net/specs/openid-authentication-1_1.html
http://openid.net/specs/openid-authentication-1_1.html
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt
ftp://ftp.rfc-editor.org/in-notes/rfc-editor/instructions2authors.txt
ftp://ftp.rfc-editor.org/in-notes/rfc-editor/instructions2authors.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc3261.txt
http://entips.blogspot.com/2007/10/secure-authentication-in-web-based.html
http://entips.blogspot.com/2007/10/secure-authentication-in-web-based.html
http://marcoslot.net/apps/openid/
http://marcoslot.net/apps/openid/
http://openid.net/specs/openid-authentication-2_0-12.html
http://www.ietf.org/rfc/rfc4590.txt

Bibliography

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Sun Microsystems, Inc. JavaServer Pages Technology. URL http://java.sun.
com/products/jsp/.

The Eclipse Foundation. Higgins Project Home, 2007. URL http://www.
eclipse.org/higgins/.

The Internet Engineering Task Force (IETF). Diameter Maintenance and Exten-
sions (dime). URL http://www.ietf.org/html.charters/dime-charter.html.

The MIT Kerberos Consortium. MIT Kerberos Consortium, 2007. URL http:
//www.kerberos.org/index.html.

The RFC Editor. How to Publish - RFC Editor Publication Process. URL http:
//www.rfc-editor.org/howtopub.html.

The RFC Editor. RFC Editor Tutorial, July 2007. URL ftp://ftp.rfc-editor.
org/in-notes/rfc-editor/tutorial.latest.pdf.

Eushiuan Tran. Verification/Validation/Certification. In Philip Koopman, editor,
Topics in Dependable Embedded Systems. Carnegie Mellon University, 1999. URL
http://www.ece.cmu.edu/ "koopman/des_s99/verification/index.html.

Alex Vasin and Erick Svenson. JDiameter: Diameter Base Protocols written in
Java, 2007. URL https://jdiameter.dev.java.net/.

Vidoop LLC. Vidoop Secure, September 2007. URL http://www.vidoop.com/
products.php?topic=vidsec.

xmldap.org. xmldap.org. URL https://xmldap.org/.

K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical Speci-
fication Road Map. RFC 4510 (Proposed Standard), June 2006. URL http:
//www.ietf.org/rfc/rfc4510.txt.

103

http://java.sun.com/products/jsp/
http://java.sun.com/products/jsp/
http://www.eclipse.org/higgins/
http://www.eclipse.org/higgins/
http://www.ietf.org/html.charters/dime-charter.html
http://www.kerberos.org/index.html
http://www.kerberos.org/index.html
http://www.rfc-editor.org/howtopub.html
http://www.rfc-editor.org/howtopub.html
ftp://ftp.rfc-editor.org/in-notes/rfc-editor/tutorial.latest.pdf
ftp://ftp.rfc-editor.org/in-notes/rfc-editor/tutorial.latest.pdf
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
https://jdiameter.dev.java.net/
http://www.vidoop.com/products.php?topic=vidsec
http://www.vidoop.com/products.php?topic=vidsec
https://xmldap.org/
http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4510.txt

A. Diameter WebAuth AVPs

A.1. Diameter base protocol

Table A.1 shows a complete list of all Diameter Base Protocol (RFC 3588) AVPs that
are used by the Diameter WebAuth specification.

A.2. Diameter Network Access Server application

Table A.2 shows a complete list of all Diameter Network Access Server Application (RFC
4005) AVPs that are used by the Diameter WebAuth specification.

A.3. HTTP-Digest authentication

The following section describes the AVPs used for the HTTP-Digest Authentication in
Web-Auth-Request and Web-Auth-Response commands.
HTTP-Digest-Challenge AVP

The HTTP-Digest-Challenge AVP is identical to the STP-Authenticate AVP specified in
RFC 4740, Section 9.5.3. [19] and is renamed here for descriptive reasons.
The HTTP-Digest-Challenge AVP has the following ABNF grammar:

HTTP-Digest-Challenge ::

Lo T e W e T e T s s B e T e B o W WA

AVP Header: 379 >
Digest-Realm }
Digest-Nonce }
Digest-Domain]
Digest-Opaque]
Digest-Stale]
Digest-Algorithm]
Digest-QoP]
Digest-HA1]
Digest-Auth-Param]
AVP]

104

A. Diameter WebAuth AVPs

Table A.1.: Reused Diameter base protocol AVPs

Attribute Name AVP Value Type Reference
Code

Origin-Host 264 Diameterldentity RFC 3588, Section 6.3. [§]
Origin-Realm 296 Diameterldentity RFC 3588, Section 6.4. [8]
Destination-Host 293 Diameterldentity RFC 3588, Section 6.5. [§]
Destination-Realm 283 Diameterldentity RFC 3588, Section 6.6. [8]
Auth-Application-Id 258 Unsigned32 RFC 3588, Section 6.8. [§]
Acct-Application-1d 259 Unsigned32 RFC 3588, Section 6.9. [8]
Result-Code 268 Unsigned32 RFC 3588, Section 7.1. [§]
Auth-Request-Type 274 Enumerated RFC 3588, Section 8.7. [8]
Session-Id 263 UTF8String RFC 3588, Section 8.8. [8]
Authorization-Lifetime 291 Unsigned32 RFC 3588, Section 8.9. [§]
Auth-Grace-Period 276 Unsigned32 RFC 3588, Section 8.10. [8
Auth-Session-State 277 Enumerated RFC 3588, Section 8.11. [8
User-Name 1 UTF8String RFC 3588, Section 8.14. [8
Event-Timestamp 55 Time RFC 3588, Section 8.21. [8

Table A.2.: Reused Diameter Network Access Server application AVPs

Attribute Name
Code

AVP Value Type

Reference

User-Password 2

OctetString RFC 4005, Section 5.1. [10]

105

A. Diameter WebAuth AVPs

HTTP-Digest-Response AVP

The HTTP-Digest-Response AVP is identical to the SIP-Authorization AVP specified in
RFC 4740, Section 9.5.4. [19] and is renamed here for descriptive reasons.
The HTTP-Digest-Response AVP has the following ABNF grammar:

HTTP-Digest-Response ::

< AVP Header: 380 >
{ Digest-Username }
{ Digest-Realm }

{ Digest-Nonce }

{ Digest-URI }

{ Digest-Response }

[Digest-Algorithm]

[Digest-CNonce]

[Digest-Opaque]

[Digest-QoP 1]

[Digest-Nonce-Count]

[Digest-Method]

[Digest-Entity-Body-Hash]
[Digest-Auth-Param]

[AVP]

HTTP-Authentication-Info AVP

The HTTP-Digest-Info AVP is identical to the SIP-Authentication-Info AVP specified

in RFC 4740, Section 9.5.5.

[19] and is renamed here for descriptive reasons.

The HTTP-Digest-Info AVP has the following ABNF grammar:

HTTP-Digest-Info ::=

*

<
L
L
L
C
L
L

HTTP-Digest AVPs

AVP Header: 381 >
Digest-Nextnonce]
Digest-QoP]
Digest-Response-Auth]
Digest-CNonce]
Digest-Nonce-Count]
AVP]

Table A.3 lists all AVPS that are RADIUS attributes defined in RFC 4590 |55] and that

are imported by RFC 4740
authentication.

(cp. Section 9.5.6.) [19] to be used for the HT'TP-Digest

106

A. Diameter WebAuth AVPs

Table A.3.: Reused HTTP-Digest authentication attributes

Attribute Name RADIUS Type
Digest-Response 103
Digest-Realm 104
Digest-Nonce 105
Digest-Response-Auth 106
Digest-Nextnonce 107
Digest-Method 108
Digest-URI 109
Digest-QoP 110
Digest-Algorithm 111
Digest-Entity-Body-Hash 112
Digest-CNonce 113
Digest-Nonce-Count 114
Digest-Username 115
Digest-Opaque 116
Digest-Auth-Param 117
Digest-AKA-Auts 118
Digest-Domain 119
Digest-Stale 120
Digest-HA1 121

107

A. Diameter WebAuth AVPs

Table A.4.: Reused credit-control application AVPs

Attribute Name AVP Value Type Reference
Code

CC-Request-Number 415 Unsigned32 RFC 4006, Section 8.2. [22]
CC-Request-Type 416 Enumerated RFC 4006, Section 8.3. [22]
Check-Balance-Result 422 Enumerated RFC 4006, Section 8.6. [22]
Unit-Value 445 Grouped RFC 4006, Section 8.8. [22]
Exponent 429 Integer32 RFC 4006, Section 8.9. [22]
Value-Digits 447 Integer64 RFC 4006, Section 8.10. [22]
Currency-Code 425 Unsigned32 RFC 4006, Section 8.11. [22]
Granted-Service-Unit 431 Grouped RFC 4006, Section 8.17. [22]
Requested-Service-Unit 437 Grouped RFC 4006, Section 8.18. [22]
CC-Time 420 Unsigned32 RFC 4006, Section 8.21. [22]
CC-Money 413 Grouped RFC 4006, Section 8.22. [22]
CC-Service-Specific-Units 417 Unsigned64 ~ RFC 4006, Section 8.26. [22]
Service-Identifier 439 Unsigned32 RFC 4006, Section 8.28. [22]
Requested-Action 436 Enumerated RFC 4006, Section 8.41. [22]
Service-Context-Id 461 UTFS8String RFC 4006, Section 8.42. [22]
Subscription-Id 443 Grouped RFC 4006, Section 8.46. [22]
Subscription-1d-Type 450 Enumerated RFC 4006, Section 8.47. |22]
Subscription-Id-Data 444 UTFS8String. RFC 4006, Section 8.48. [22]

A.4. Diameter credit-control application

Table A.4 shows a complete list of all Diameter credit-control application (RFC 4006)
AVPs that are used by the Diameter WebAuth specification.
The following AVPs need further explanations:

CC-Request-Number Since this application only supports credit control one time
events, the CC-Request-Number can simply be set to 0 for every request.

CC-Request-Type The CC-Request-Type is EVENT REQUEST for all one time
credit control events.

Subscription-Id For a number of requests and responses in RFC 4006 [22] a Sub-
scription-Id AVP is required or recommended. For compatibility reasons it therefore
SHOULD be included in such requests/responses even if the web application does

108

A. Diameter WebAuth AVPs

not use subscription ids for their users. In such case, the Subscription- Id-Type
AVP SHOULD be set to END USER_PRIVATE and the Subscription-Id-Data
AVP SHOULD be set to the same value as the User-Name AVP.

109

	Introduction
	Motivation and scope
	Basic concepts
	Identity management
	Web-based authentication
	Authorization

	Terminology
	Thesis organization

	Related work
	OpenID
	The Liberty Alliance
	Security Assertion Markup Language (SAML)

	Windows CardSpace
	Kerberos
	Diameter
	The Diameter base protocol
	Extending Diameter

	Comparison
	Results

	Summary

	Design
	Introduction
	Motivation and goals
	Use cases

	Overview
	Authentication and authorization
	Accounting
	Identity attributes

	Diameter WebAuth commands
	AA-Request (AAR) command
	AA-Answer (AAA) command
	Credit-Control-Request (CCR) command
	Credit-Control-Answer (CCA) command
	Identity-Information-Request (IIR) command
	Identity-Information-Answer (IIA) command

	Diameter WebAuth AVPs
	Imported AVPs
	Identity information AVPs

	Privacy considerations
	Authentication
	Credit-control
	Identity information

	Security considerations
	Basic authentication
	Digest authentication
	Renegade or compromised WebAuth clients

	Summary

	Implementation
	Overview
	Diameter WebAuth application
	Implementation basis
	Structure
	Message abstraction
	Server implementation
	Client implementation
	Test suite

	Web application
	MyBlog application
	JSP subpages
	Helper classes

	Summary

	Evaluation
	Implementation verification
	Design validation
	Authentication and authorization
	Accounting
	Identity attributes

	Performance considerations
	Feature comparison
	Results

	Summary

	Conclusion
	Future work
	Bibliography
	Diameter WebAuth AVPs
	Diameter base protocol
	Diameter Network Access Server application
	HTTP-Digest authentication
	Diameter credit-control application

