FH Kufstein Tirol
Studiengang Wirtschaftsinformatik

Wirtschaftlichkeitsbetrachtung von Lösungen zur IT-
Unterstützung des Beschaffungsprozesses

Diplomarbeit

Zur Erlangung des
Akademischen Grades
Magistra (FH)

Eingereicht von: Barbara Gruber
 Bad Häring
Erstgutachter: Dr. Ewald Jarz
Zweitgutachter: Dr. Karsten Böhm
EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Diplomarbeit selbständig angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher weder in gleicher noch in ähnlicher Form einer anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Kufstein, am 4. Juli 2008

Barbara Gruber
INHALTSVERZEICHNIS

EIDESSTATTLICHE ERKLÄRUNG ... I

INHALTSVERZEICHNIS .. II

ABKÜRZUNGSVERZEICHNIS .. V

ABBILDUNGSVERZEICHNIS ... VII

TABELLENVERZEICHNIS .. VIII

KURZFASSUNG .. IX

ABSTRACT ... X

1 EINLEITUNG .. 1
1.1 AUFGABENSTELLUNG UND ZIELE .. 1
1.2 VORGEHENSWEISE UND AUFBAU ... 2

2 IT-UNTERSTÜTZUNG BETRIEBSÜBERGREIFENDER GESCHÄFTSPROZESSE 3
2.1 Begriffsdefinitionen ... 3
2.1.1 B2B ... 3
2.1.2 eSCM .. 4
2.1.3 ERP II ... 5
2.2 PROBLEMATIK UND ZIEL ... 6
2.3 BETRIEBSÜBERGREIFENDE GESCHÄFTSPROZESSE 7

3 IT-UNTERSTÜTZUNG DES BESCHAFFUNGSPROZESSES 9
3.1 Begriffsdefinitionen ... 9
3.2 GRUNDLAGEN UND BEDIUTUNG DER BESCHAFFUNG 10
3.3 ZIELSETZUNG VON E-PROCUREMENT 12
3.4 FUNKTIONALITÄTEN VON TOOLS ... 15
3.4.1 Elektronische Zusammenarbeit ... 16
3.4.2 Entscheidungsunterstützung .. 17
3.4.3 Vertragsmanagement ... 17
3.4.4 Elektronische Ausschreibungen .. 18
3.4.5 Rückwürtsauktionen .. 18
3.4.6 Elektronische Kataloge .. 20
3.4.7 Beschaffung von direkten Gütern ... 22
3.4.8 Verlagerung von Tätigkeiten zum Lieferanten ... 23
3.4.9 Elektronischer Zahlungsverkehr ... 23
3.4.10 Leistungsüberwachung .. 24
3.5 VORGEGENWEISE BEI EINEM E-PROCUREMENT-PROJEKT ... 24
3.5.1 Besonderheiten bei E-Procurement-Projekten .. 25
3.5.2 Auswahl von geeigneten Beschaffungsartikeln .. 26
3.5.3 Auswahl von Lieferanten ... 27
3.5.4 Make-or-Buy-Entscheidung ... 28
3.5.5 Kriterien bei der Auswahl von Standardsoftware .. 30
3.6 IMPLEMENTIERUNGSVARIANTEN .. 31
3.6.1 Elektronische Marktplätze ... 33
3.6.2 Portale .. 34
3.6.3 Application Service Provider (ASP) ... 36
3.7 INTEGRATION ... 37
3.8 FORMEN DER LIEFERANTENANBINDUNG .. 39
3.8.1 EDI .. 39
3.8.2 WebEDI .. 41
3.8.3 XML .. 42
3.8.4 Supplier Portal .. 45
3.8.5 Web Services .. 46
3.8.6 Weitere Formen der Anbindung ... 48
3.9 VERBREITUNG VON E-PROCUREMENT ... 49
3.10 ANFORDERUNGEN AN DIE SICHERHEIT ... 50
3.11 RECHTLICHE ANFORDERUNGEN ... 52
3.12 GEFÄHREN UND RISIKEN BEI DER EINFÜHRUNG .. 53
4 WIRTSCHAFTLICHKEIT .. 56
4.1 BEGRIFFSDEFINITIONEN .. 56
4.2 VERFAHREN ZUR BEURTEILUNG DER WIRTSCHAFTLICHKEIT VON IT-PROJEKTEN 57
4.2.1 Der IT Business Case ... 57
4.2.2	Kosten-Nutzen-Analyse	59
4.2.3	Return on Investment (ROI)	64
4.3	WIRTSCHAFTLICHKEIT IT-GESTÜTZTER BESCHAFFUNGSLÖSUNGEN	66
4.3.1	Voraussetzungen	66
4.3.2	Kosten- und Nutzenaspekte	68
4.3.3	Studien zur Wirtschaftlichkeit	72
4.3.4	Einflussfaktoren	73
4.3.5	Methodisches Vorgehen	74
5	FALLBEISPIEL FA. DATACON	78
5.1	UNTERNEHMENSBESCHREIBUNG UND AUFGABENSTELLUNG	78
5.2	ANFORDERUNGSANALYSE	79
5.2.1	Festlegung der Ziele	79
5.2.2	Ist-Analyse	79
5.2.3	Soll-Analyse	82
5.2.4	Request for Information (RFI)	85
5.2.5	Festlegung und Gewichtung der Kriterien	86
5.2.6	Nutzwertanalyse und Entscheidung	87
5.3	KOSTEN-NUTZEN-ANALYSE UND ROI-BETRACHTUNG	88
5.4	ZUSÄTZLICHE RELEVANTE ASPEKTE	89
5.5	EMPFEHLUNG UND NÄCHSTE SCHritte	91
5.6	LESSONS LEARNED	92
6	RESÜMEE UND AUSBlick	94
ANHANG	97	
LITERATURVERZEICHNIS	122	
ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2AI</td>
<td>Application-to-Application Integration</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASP</td>
<td>Application Service Provider</td>
</tr>
<tr>
<td>B2B</td>
<td>Business-to-Business</td>
</tr>
<tr>
<td>B2BI</td>
<td>B2B Integration</td>
</tr>
<tr>
<td>B2C</td>
<td>Business-to-Consumer</td>
</tr>
<tr>
<td>BANF</td>
<td>Bestellanforderung</td>
</tr>
<tr>
<td>BBAI</td>
<td>B2B Application Integration</td>
</tr>
<tr>
<td>BME</td>
<td>Bundesverband Materialwirtschaft, Einkauf und Logistik</td>
</tr>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>CPFR</td>
<td>Collaborative Planning, Forecasting and Replenishment</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>DCOM</td>
<td>Distributed Component Object Model</td>
</tr>
<tr>
<td>DPS</td>
<td>Desktop Purchasing System</td>
</tr>
<tr>
<td>DTD</td>
<td>Dokumenttypdefinition</td>
</tr>
<tr>
<td>e-/E-</td>
<td>electronic</td>
</tr>
<tr>
<td>EAI</td>
<td>Enterprise Application Integration</td>
</tr>
<tr>
<td>EBPP</td>
<td>Electronic Bill Payment and Presentment</td>
</tr>
<tr>
<td>EC-RL</td>
<td>E-Commerce-Richtline</td>
</tr>
<tr>
<td>EDI</td>
<td>Electronic Data Interchange</td>
</tr>
<tr>
<td>EDIFACT</td>
<td>EDI for Administration, Commerce and Transport</td>
</tr>
<tr>
<td>engl.</td>
<td>englisch</td>
</tr>
<tr>
<td>eRFQ</td>
<td>electronic Request for Quotation</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>eSCM</td>
<td>electronic SCM</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>Fa.</td>
<td>Firma</td>
</tr>
<tr>
<td>GuV</td>
<td>Gewinn- und Verlustrechnung</td>
</tr>
<tr>
<td>HTTPS</td>
<td>HyperText Transfer Protocol Secure</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td>IPSEC</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IT</td>
<td>Informationstechnik</td>
</tr>
<tr>
<td>ITM</td>
<td>IT Management</td>
</tr>
<tr>
<td>KMU</td>
<td>Kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>MLK</td>
<td>Multi-Lieferanten-Katalog</td>
</tr>
<tr>
<td>MM</td>
<td>Materials Management</td>
</tr>
<tr>
<td>MRO</td>
<td>Maintenance, Repair & Operations</td>
</tr>
<tr>
<td>NWA</td>
<td>Nutzwertanalyse</td>
</tr>
<tr>
<td>Prio1</td>
<td>Priorität 1</td>
</tr>
<tr>
<td>RFI</td>
<td>Request for Information</td>
</tr>
<tr>
<td>RMI</td>
<td>Remote Method Invocation</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Procedure Call</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>SGML</td>
<td>Standard Generalized Markup Language</td>
</tr>
<tr>
<td>SOA</td>
<td>Serviceorientierte Architektur</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>SRM</td>
<td>Supplier Relationship Management</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UDDI</td>
<td>Universal Description, Discovery and Integration</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language</td>
</tr>
<tr>
<td>W3C</td>
<td>World Wide Web Consortium</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Services Description Language</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
<tr>
<td>ZEW</td>
<td>Zentrum für Europäische Wirtschaftsforschung GmbH</td>
</tr>
</tbody>
</table>
ABBILDUNGSVERZEICHNIS

ABBILDUNG 1: ELEKTRONISCHE GESCHÄFTSBEZIEHUNGEN ... 4
ABBILDUNG 2: UNTERNEHMENSSÜBERGREIFENDE KONZEPTE ... 8
ABBILDUNG 3: SCHRITTE BEIM BESCHAFFUNGSPROZESS ... 12
ABBILDUNG 4: HERKÖMMLICHER AUSSSCHREIBUNGSPROZESS .. 18
ABBILDUNG 5: PROZESS DESKTOP PURCHASING ... 22
ABBILDUNG 6: KATEGORISIERUNG VON PORTALEN ... 35
ABBILDUNG 7: LIEFERANTENANBINDUNG PER EDI ... 40
ABBILDUNG 8: AUSZUG AUS EINER BESTELLUNG IM EDIFACT-FORMAT .. 41
ABBILDUNG 9: AUSZUG AUS EINER BESTELLUNG IM XML-FORMAT ... 43
ABBILDUNG 10: LIEFERANTENANBINDUNG ÜBER EIN SUPPLIER PORTAL 46
ABBILDUNG 11: LIEFERANTENANBINDUNG ÜBER WEB SERVICES .. 48
ABBILDUNG 12: ELEMENTE EINES IT BUSINESS CASE ... 58
ABBILDUNG 13: ELEMENTE DER WIRTSCHAFTLICHKEITSANALYSE .. 59
ABBILDUNG 14: VORGEHENSWEISE BEI DER NUTZWERTANALYSE .. 63
ABBILDUNG 15: VORAUSSETZUNGEN FÜR DIE WIRTSCHAFTLICHKEITSBetrachtung IT-GESTÜTZTER BESCHAFFUNG ... 66
ABBILDUNG 16: METHODISCHES VORGEHEN ZUR ENTSCHEIDUNGSFINDUNG 75
ANHANG ABBILDUNG A: OPERATIVER ISTPROZESS – SEITE 1 ... 99
ANHANG ABBILDUNG B: OPERATIVER ISTPROZESS – SEITE 2 ... 100
ANHANG ABBILDUNG C: OPERATIVER ISTPROZESS – SEITE 3 ... 101
ANHANG ABBILDUNG D: STRATEGISCHER ISTPROZESS – SEITE 1 .. 102
ANHANG ABBILDUNG E: STRATEGISCHER ISTPROZESS – SEITE 2 .. 103
ANHANG ABBILDUNG F: SOLLPROZESS „KOOPERATIVE PLANUNG UND FORECAST“ 109
ANHANG ABBILDUNG G: SOLLPROZESS „LIEFERANTENBEURTEILUNG“ ... 110
TABELLENVERZEICHNIS

Tabelle 1: Funktionalitätskategorien von beschaffungsunterstützenden Werkzeugen ... 15

Tabelle 2: Kombinierte ABC/XYZ-Analyse ... 27

Tabelle 3: Auswahlkriterien für Standardsoftware ... 31

Tabelle 4: Vergleich von Implementierungsvarianten .. 32

Tabelle 5: Funktionen der Basisprotokolle für Web Services ... 47

Tabelle 6: Sicherheitsziele .. 51

Tabelle 7: Ermittlung des ROI und der Amortisationsdauer ... 65

Tabelle 8: Kosten- und Nutzenaspekte von E-Procurement-Projekten .. 71

Tabelle 9: Faktoren, von denen die Wirtschaftlichkeit von E-Procurement-Systemen abhängt .. 74

Tabelle 10: Anforderungen an die E-Procurement-Lösung ... 83

Tabelle 11: Kumuliertes Ergebnis aus der Nutzwertanalyse ... 87

Anhang Tabelle A: Beschreibung der verwendeten Symbole des Flussdiagrammes .. 97

Anhang Tabelle B: Abkürzungen bei der Prozessmodellierung .. 98

Anhang Tabelle C: Anwendungsfallkarte „Artikeldaten einsehen“ .. 111

Anhang Tabelle D: Anwendungsfallkarte „Bestellung einsehen“ ... 112

Anhang Tabelle E: Anwendungsfallkarte „Aufträge bestätigen“ ... 113

Anhang Tabelle F: Anwendungsfallkarte „Aufnahme von Daten potenzieller Lieferanten“ ... 114

Anhang Tabelle G: Anwendungsfallkarte „Lieferantendaten einsehen“ .. 114

Anhang Tabelle H: Kostenschätzung anhand der Anforderungen .. 115

Anhang Tabelle I: Definierte Anwendungsfälle für Interviews .. 117

Anhang Tabelle J: Bewertungskriterien für die Nutzwertanalyse .. 117

Anhang Tabelle K: K.O.-Kriterien .. 118

Anhang Tabelle L: Ermittlung der Gewichtungsfaktoren durch paarweisen Vergleich ... 118

Anhang Tabelle M: Zielerfüllungsfaktoren ... 119

Anhang Tabelle N: Nutzwertanalyse Gruber .. 120

Anhang Tabelle O: Nutzwertanalyse Kaiser .. 120

Anhang Tabelle P: Nutzwertanalyse Stegherr ... 121
KURZFASSUNG

Schlagwörter: Electronic Procurement, Integration, Supply Chain Management, Beschaffung, Wirtschaftlichkeitsrechnung

ABSTRACT

Keywords: Electronic Procurement, Integration, Supply Chain Management, Procurement, Cost-effectiveness analysis

Companies are under rising cost pressure due to increasing globalization and growing competition. To remain competitive, business processes have to be optimized not only within the company, but also beyond the companies’ borders. In the initial years of e-business mainly initiatives in the area of sales were developed, whereas now companies increasingly realize the great significance of procurement and the cost savings potential in this area.

For this reason, electronic tools have been designed in order to support and implement the procurement process, summarized under the term e-procurement. Numerous companies already use this concept successfully. Apart from the expected benefits, the rollout of such a solution involves high costs for the company and numerous risks and dangers.

Against this background this paper examines if it is beneficial for a company to implement such a system, i.e. if the benefit aspects outbalance the costs for the implementation and operation of the system in the long term. However, in a lot of companies the decision-making process takes place in an unstructured way. Many of them make their decision based on instinct or follow a trend. In order to solve the mentioned problems, a methodical approach for decision making attuned to e-procurement solutions is being developed and field tested on the example of the Datacon Technology GmbH.

The implementation of the case study as well as other studies in this area suggest that it is indeed possible to introduce an e-procurement solution in a cost-effective way. Due to different objectives and functions of systems it is, however, impossible to give a consistent answer on the question of whether such a system is cost-effective for a company or not. For this reason it is recommended that the economic case is considered based on the developed and tested approach as a basis for decision-making.
1 Einleitung

Um in Zeiten der Globalisierung und des ausgeprägten Wettbewerbs konkurrenzfähig bleiben zu können, stehen Unternehmen verstärkt unter Kostendruck. Aufgrund der zunehmenden Vernetzung ist es nötig, Geschäftsprozesse von Unternehmen nicht nur unternehmensintern, sondern auch über die Unternehmensgrenzen hinweg zu optimieren. Eine Möglichkeit, die bereits viele erfolgreiche Unternehmen (z.B. BMW, IBM, etc.) genutzt haben, ist die Unterstützung der unternehmensübergreifenden Prozesse zu Kunden und Lieferanten mittels IT (Informationstechnik).

Da die Beschaffung von Materialien in vielen Betrieben den größten Kostenblock darstellt, liegt ein Schwerpunkt der Anstrengungen, um Kosteneinsparungspotenziale aufzuspüren, auf dem Beschaffungsprozess.

Aus dieser Motivation heraus entwickelten sich elektronische Werkzeuge, welche den Einkaufsprozess unterstützen und umsetzen sollen - zusammengefasst unter dem Begriff E-Procurement.1 Diese Werkzeuge verfolgen zum einen das Ziel, die Prozesskosten in der Beschaffung zu senken, andererseits sollen die Einstandspreise der eingekauften Produkte reduziert werden.

Aufgrund der hohen Kosten und der möglichen Risiken und Gefahren, die eine solche Lösung mit sich bringt, stellt sich die Frage, ob die IT-Unterstützung des Beschaffungsprozesses langfristig wirtschaftlich für ein Unternehmen ist. In vielen Unternehmen läuft der Prozess der Entscheidungsfindung jedoch unstrukturiert ab, zahlreiche Unternehmen treffen ihre Entscheidungen aus dem Bauch heraus bzw. laufen einem Hype nach. Diese Vorgehensweise kann sich jedoch dadurch rächen, dass trotz der beträchtlichen Kosten für die Einführung kein vergleichbarer Nutzen im Unternehmen generiert wird.

1.1 Aufgabenstellung und Ziele

Ziel dieser Diplomarbeit ist die Untersuchung, ob die Einführung eines E-Procurement-Systems zur Optimierung der Beschaffungsprozesse bei der Fa. Datacon einer Wirtschaftlichkeitsbetrachtung standhält. Um diese Aussage treffen zu können, ist es notwendig, vorher Möglichkeiten und Risiken durch die IT-Unterstützung des

1 vgl. Stoll, 2007, S. 1
Beschaffungsprozesses aufzuzeigen, die Anforderungen an die Lösung genau zu definieren sowie einen entsprechenden Anbieter auszuwählen. Weiters ist die Auswahl eines geeigneten Verfahrens zur Wirtschaftlichkeitsbeurteilung solcher IT-Systeme Voraussetzung.

Im Zuge dieser Betrachtung soll eine methodische Vorgehensweise zur Entscheidungsfindung für oder gegen ein solches System erarbeitet werden. Diese Vorgehensweise soll einen Leitfaden für andere Unternehmen darstellen, die künftig vor derselben Entscheidung wie die Fa. Datacon stehen.

1.2 Vorgehensweise und Aufbau

Einleitend werden in Kapitel 2, IT-Unterstützung betriebsübergreifender Geschäftsprozesse, die begrifflichen und thematischen Grundlagen, auf die sich diese Diplomarbeit stützt, sowie die Problematik der Themenstellung angeführt. Dieses Kapitel dient dazu, das Thema E-Procurement in einen übergeordneten Kontext einzuordnen. Im dritten Abschnitt (Kapitel 3) liegt der Fokus auf der IT-Unterstützung des Beschaffungsprozesses. Dieses Kapitel dient dazu, Grundlagen und Zielsetzungen der Konzepte E-Procurement bzw. Supplier Relationship Management (SRM) vorzustellen sowie den Ablauf und die Besonderheiten bei einem Projekt zur Einführung einer solchen Lösung zu zeigen.

Das letzte Kapitel - Resümee und Ausblick – klärt, inwieweit das Ergebnis des Fallbeispiels auf andere Unternehmen angewendet werden kann und gibt einen Ausblick auf weitere Entwicklungen, welche zukünftig in diesem Bereich von Bedeutung sein werden.
2 IT-Unterstützung betriebsübergreifender Geschäftsprozesse

Dieser Abschnitt, der sich mit der IT-Unterstützung unternehmensübergreifender Geschäftsprozesse beschäftigt, soll einen Überblick über die Begrifflichkeiten und die Problematik dieser Themenstellung geben. Dabei wird sowohl die Beschaffungsseite zum Lieferanten als auch die Vertriebsseite zum Kunden betrachtet. Der Fokus der Arbeit liegt jedoch auf Konzepten zur IT-Unterstützung des Beschaffungsprozesses, Kapitel 3 bis 6 behandeln ausschließlich diesen Teilbereich. Um das Thema jedoch gedanklich in einen größeren Zusammenhang einzuordnen, ist eine vorhergehende Betrachtung der gesamten Lieferkette, die in diesem Kapitel vorgenommen wird, hilfreich.

2.1 Begriffsdefinitionen

2.1.1 B2B

„Electronic Business bedeutet Anbahnung, Vereinbarung und Abwicklung elektronischer Geschäftsprozesse, d.h. Leistungsaustausch mit Hilfe öffentlicher oder privater Kommunikationsnetze resp. Internet, zur Erzielung einer Wertschöpfung.“²

Abbildung 1 veranschaulicht die bedeutendsten drei Marktteilnehmer im E-Business (Unternehmen, Konsumenten und Behörden) und ihre denkbaren Geschäftsbeziehungen.

² Meier & Stormer, 2005, S. 2
Die Zweierbeziehungen Business-to-Consumer (B2C) und Business-to-Business sind Alternativen des elektronischen Handels (E-Commerce). Dabei bieten Unternehmen dem Endkunden oder anderen Unternehmen ihre Waren und Dienstleistungen an.\(^3\)

Abbildung 1: Elektronische Geschäftsbeziehungen\(^4\)

B2B-Commerce spielt sich also zwischen Unternehmen (entlang umfassender Wertschöpfungsketten) ab. Die eigentliche IT-Unterstützung der unternehmensübergreifenden Prozesse wird als B2B-Integration bezeichnet (vgl. Kapitel 3.7) und findet grundlegend zwischen den Softwaresystemen der Unternehmen statt.\(^5\)

2.1.2 eSCM

Das Konzept Supply Chain Management (SCM) bezeichnet die zwischenbetriebliche Integration vom Lieferanten des Lieferanten bis zum Kunden des Kunden. Typische Charakteristika von SCM sind dabei vor allem die hohe Kundenorientierung, die Kooperation zwischen den Partnern, eine hohe Integration der betrieblichen Funktionen sowie die Optimierung und Standardisierung innerhalb der Wertschöpfungskette.\(^6\)

Electronic Supply Chain Management erweitert den Begriff SCM um die elektronische Komponente. Nach Melzer-Ridinger wird die Perspektive von ERP-Systemen, welche auf die Optimierung der Beschaffungsprozesse im Unternehmen gerichtet ist, in diesem Konzept auf vor- und nachgelagerte Partner der Lieferkette ausgedehnt.\(^7\)

Der Begriff eSCM verbindet somit viele Funktionen und Anwendungsbereiche im Unternehmen, welche elektronisch unterstützt werden können. Dazu zählen zum Beispiel

\(^3\) vgl. Meier & Stormer, 2005, S. 2
\(^4\) Modifiziert nach Merz, 2002, S. 24
\(^5\) vgl. Merz, 2002, S. 24
\(^7\) vgl. Melzer-Ridinger, 2007, S. 164
E-Procurement (elektronische Beschaffung), E-Sales (elektronischer Vertrieb) oder E-Service (elektronischer Service).\(^8\)

2.1.3 ERP II

Enterprise-Resource-Planning-Systeme (abgekürzt ERP-Systeme) sind integrierte betriebswirtschaftliche Standardanwendungspaketepakete, welche fast alle innerbetrieblichen Aufgaben und Prozesse wie zum Beispiel Beschaffung, Produktion, Vertrieb, Personal- und Rechnungswesen in einem Unternehmen IT-seitig unterstützen.\(^9\)

Der Hauptaspekt eines ERP-Systems ist die Integration der unterschiedlichen Aufgaben durch eine zentrale Datenhaltung. Auf diese Weise werden bereichsübergreifende Geschäftsprozesse unterstützt und eine Redundanz der Daten vermieden.\(^10\)

Gartner sieht ERP II dabei als Geschäftsstrategie sowie als Ansammlung branchen- und bereichsspezifischer Anwendungen, welche durch die Bereitstellung und Optimierung betriebsinterner und –übergreifender Prozesse Wert für Kunden und Shareholder schaffen. Im Gegensatz zu ERP-Systemen sollen ERP II-Systeme für alle Bereiche und Segmente verwendet werden können und sämtliche Funktionen unterstützen. ERP II-Systeme sind bzgl. ihrer Architektur offen sowie web- und komponentenbasiert und integrieren externe Wertschöpfungspartner. Für Unternehmen, die ein ERP-System nutzen und auch unternehmensübergreifende Prozesse integriert und zeittnah abbilden möchten, bedeutet dies jedoch nicht, auf ein komplett neues System umstellen zu müssen. Ein existierendes ERP-System entwickelt sich durch zahlreiche Upgrades der Hersteller im Laufe der Zeit zu einem ERP II-System.\(^12\)

\(^8\) vgl. Wannenwetsch & Nicolai, 2002, S. 5
\(^9\) vgl. Martin, Mauterer, & Gemünden, 2002, S. 109
\(^10\) vgl. Abts & Mülder, 2004, S. 164
\(^11\) Gartner Group, 2000, S. 1
\(^12\) vgl. Montanus, 2004, S. 45
\(^13\) vgl. Gartner Group, 2000, S. 1ff
2.2 Problematik und Ziel

Zusätzlich konkurrieren Unternehmen in der heutigen Geschäftswelt, in der Zusammenarbeit eine immer wichtigere Rolle spielt, nicht nur hinsichtlich Verfügbarkeit, Preis und Qualität ihrer Produkte und Dienstleistungen sondern auch im Hinblick auf die Qualität der Informationen, welche sie für ihre Geschäftspartner (Kunden und Lieferanten) zur Verfügung stellen.¹⁶

Die angeführten Schwierigkeiten können nur dadurch beseitigt werden, indem Unternehmen eine umfassende Prozessorientierung über die Unternehmensgrenzen hinaus

¹⁴ vgl. Staud, 2006, S. 16
¹⁶ vgl. Gartner Group, 2000, S. 1
entwickeln und somit transparente, betriebsübergreifende Prozesse schaffen. Um die Medienbrüche an den Unternehmensgrenzen zu beseitigen, gilt es, die Prozesse unternehmensübergreifend mit Hilfe einer geeigneten Softwarelösung zu integrieren, das heißt die betroffenen Informationssysteme müssen lernen, miteinander zu kommunizieren (vgl. Kapitel 3.7). Besonders die Entwicklung des Internets brachte einen Aufschwung für unternehmensübergreifende IT-Lösungen und ermöglicht auch Kleinunternehmen, in diesen Bereichen tätig zu werden.

2.3 Betriebsübergreifende Geschäftsprozesse

Schmelzer & Sesselmann definieren den Begriff Geschäftsprozess folgendermaßen:

„Ein Geschäftsprozess besteht aus der funktions- und organisationsüberschreitenden Verknüpfung wertschöpfender Aktivitäten, die von Kunden erwartete Leistungen erzeugen und die aus der Geschäftsstrategie abgeleiteten Prozessempfehlungen umsetzen.“

Der Definition kann entnommen werden, dass ein Geschäftsprozess eine Abfolge von Tätigkeiten darstellt, die einen Wertschöpfungsbeitrag leisten und einen Kundenbezug aufweisen. Zusätzlich verfügt ein Geschäftsprozess jedoch noch über weitere Eigenschaften, die aus dieser Begriffserklärung nicht hervorgehen. Ein Geschäftsprozess charakterisiert sich weiters durch einen messbaren In- und Output und ist reproduzierbar bzw. weist einen Wiederholungscharakter auf.

18 vgl. Merz, 2002, S. 10f
19 Schmelzer & Sesselmann, 2008, S. 64
20 vgl. Wallmüller, 2001, S. 76
21 vgl. Hirzel, 2005, S. 75
weitreichendste Konzept vom Kunden des Kunden bis zum Lieferanten des Lieferanten
darstellt, ist ein ERP-System auf die Unterstützung der innerbetrieblichen Prozesse
ausgerichtet. Die Begriffe E-Procurement und SRM werden aufgrund der Relevanz für
diese Arbeit in Kapitel 3.1 nochmals näher definiert.

Abbildung 2: Unternehmensübergreifende Konzepte

Während in den Anfangsjahren des E-Business hauptsächlich vertriebsseitige Initiativen
wie Webshops entwickelt wurden, liegt der aktuelle Fokus auf Lösungen zur IT-
Unterstützung des Beschaffungsprozesses. Nach einer Untersuchung von Wecker &
Wirtz bringt die internetbasierte Integration der Beschaffungsseite einen höheren positiven
Effekt als die Integration der Abnehmerseite. Aus diesem Grund sollen bevorzugt E-
Procurement-Lösungen in einem Unternehmen umgesetzt werden.

22 Eigene Darstellung
23 vgl. Lawrenz & Nenninger, 2002, S. 1
3 IT-Unterstützung des Beschaffungsprozesses

Um die Zielsetzung dieser Arbeit (vgl. Kapitel 1.1) zu erfüllen, ist es nötig, Möglichkeiten und Risiken der IT-Unterstützung im Bereich der Beschaffung aufzuzeigen. Die Ergebnisse dieses Abschnittes dienen als Ausgangspunkt für die Erarbeitung einer methodischen Vorgehensweise zur Entscheidungsfindung in Kapitel 4 sowie als Hilfestellung bei der Definition der Anforderungen und Sollprozesse im Fallbeispiel (Kapitel 5).

3.1 Begriffsdefinitionen

In der Literatur werden verschiedene Begriffe für die IT-Unterstützung von Beschaffungsprozessen benutzt. Die drei häufigsten Ausdrücke sind E-Procurement, E-Purchasing und (electronic) Supplier Relationship Management.

E-Procurement wird nach Nekolar folgendermaßen definiert:

„e-Procurement hilft Unternehmen, Waren und Dienstleistungen zu den geringsten Gesamtkosten zu beschaffen, wobei der gesamte Einkaufsprozess von der Planung über die Beschaffung bis zur Bezahlung automatisiert wird.“

Nach Stoll:

„E-Procurement unterstützt die strategische und operative Beschaffung derart durch elektronische Hilfsmittel, dass der Beschaffungsprozess im Hinblick auf die Kenngrößen Prozesskosten und Prozessergebnis optimal wird.“

Die Verwendung des Begriffes E-Procurement stützt sich in dieser Arbeit auf die Definition von Stoll, da in dieser Begriffsbestimmung strategische und operative Beschaffungsprozesse miteinbezogen werden, allen relevanten Kostenfaktoren (Prozess- und Produktkosten) Rechnung getragen wird und der Fokus auf elektronischen Hilfsmitteln liegt.

25 Nekolar, 2003, S. 1
26 Stoll, 2007, S. 17
Der Begriff E-Purchasing wird von Stoll als Synonym für E-Procurement verwendet, Ebel hingegen sieht E-Purchasing als einen Teilbereich von E-Procurement, der sich mit der IT-Unterstützung der operativen Beschaffungstätigkeiten beschäftigt.27 Die Verwendung von E-Purchasing stützt sich in dieser Arbeit auf die Definition von Ebel und wird synonym zum Begriff E-Ordering verwendet.

Laut Appelfeller & Buchholz stand der Begriff SRM in den späten 90er-Jahren für internetgestützte Beschaffungslösungen, inzwischen deckt dieser Begriff jedoch den kompletten Beschaffungsprozess ab, das bedeutet die Kombination aus traditionellen Systemen (z.B. ERP-System, Data Warehouse) und den Funktionalitäten internetgestützter Beschaffungssysteme (siehe auch Kapitel 3.4).28

„Unter SRM soll die von einer Beschaffungsgesamtstrategie ausgehende Gestaltung der strategischen und operativen Beschaffungsprozesse sowie die Gestaltung des Lieferantenmanagements verstanden werden. Für diese Gestaltung ist an vielen Stellen der abgestimmte Einsatz von konventioneller und internetgestützter IT von großer Bedeutung. Aus diesem Grund soll kurz gefasst vom IT-gestützten Beschaffungs- und Lieferantenmanagement gesprochen werden.“29

SRM stellt daher ein weitreichenderes Konzept als E-Procurement dar, da der IT-Unterstützung zwar eine große Bedeutung zugesprochen wird, die elektronischen Hilfsmittel (insbesondere das Internet) jedoch nicht wie beim E-Procurement den Hauptsfokus darstellen und zusätzlich das Lieferantenmanagement eine wichtige Rolle spielt.

3.2 Grundlagen und Bedeutung der Beschaffung

Für ein besseres Verständnis der angeführten Konzepte ist es nötig, den Begriff Beschaffung zu definieren und die Bedeutung dieses Prozesses für ein Unternehmen darzustellen.

Laut einer Definition von Arnold umfasst die Beschaffung als betriebswirtschaftliche Funktion

27 vgl. Stoll, 2007, S. 17 und Ebel, 2007, S. 166
29 Appelfeller & Buchholz, 2005, S. 5
„sämtliche unternehmens- und/oder marktbezogene Tätigkeiten, die darauf gerichtet sind, einem Unternehmen die benötigten, aber nicht selbst hergestellten Objekte verfügbar zu machen.“

Die Tatsache, dass die Qualität der Enderzeugnisse und somit auch die Umsätze in vielen Branchen entscheidend von der Qualität der beschafften Güter abhängen, erhöht wiederum den Stellenwert der Beschaffung für den Unternehmenserfolg.

Der Beschaffungsprozess unterteilt sich nach Stoll in die strategische und operative Beschaffung. Meier & Stormer führen eine weitere Zerlegung der strategischen Beschaffung in einen strategischen und einen taktischen Teilbereich durch, wobei Aufgaben wie die Verhandlung von Rahmenverträgen und die Auswertung von Bedarfs- und Bestellmustern in den Bereich der taktischen Beschaffung fallen.

30 Arnold, 1997, S. 3
31 vgl. Gieschen, 2003, S. 181
33 vgl. Large, 2006, S. 3
34 vgl. Schütt, 2006, S. 104f
35 vgl. Stoll, 2007, S. 10
36 vgl. Meier & Stormer, 2005, S. 54

3.3 Zielsetzung von E-Procurement

Die Hauptfaktoren, die viele Unternehmen dazu veranlassen, IT-Systeme zur Unterstützung ihrer Beschaffungsprozesse einzusetzen, sind die im realen Einkauf vorherrschenden Probleme und Restriktionen. Laut Dolmetsch existieren in der Beschaffung augenscheinlich folgende Schwierigkeiten, die durch den Einsatz von internetbasierten Beschaffungslösungen behoben werden sollen:

- Konzentration auf die Durchführung operativer Routinetätigkeiten sowie mangelnde Unterstützung strategischer Aufgaben
- Maverick Buying (Beschaffung außerhalb verhandelter Verträge)

37 Modifiziert nach Nenninger, 1999, S. 12
38 vgl. Stoll, 2007, S. 10
40 vgl. Dolmetsch, 2000, S. 11f
• kostenintensive Fehler und Zeitverschwendung aufgrund von Fehlinformationen (zum Beispiel Abklärungsbedarf durch inkomplette oder falsche Spezifikationen)

• hohe Lagerbestände durch lange und ungewisse Lieferzeiten

• fehlende Standards in der Beschaffung

• hohe Prozesskosten durch manuelle, papierbasierte Prozessschritte.

Vor allem die rasche Verbreitung des Internets löste um die Jahrtausendwende einen wahren Hype um E-Procurement-Lösungen aus, da solchen Systemen Einsparungspotenziale von bis zu 80 Prozent der Transaktionskosten in der Beschaffung vorausgesagt wurden. Auch wenn sich dieser Prozentsatz durch die große Anzahl an durchgeführten Projekten und Erfahrungswerten mittlerweile relativiert hat, entdecken immer mehr Unternehmen die strategische Bedeutung der Beschaffung zur Sicherstellung und Erhöhung der eigenen Wettbewerbsfähigkeit. Während der Stellenwert des Einkaufs in Unternehmen in der Vergangenheit als operative Funktion eher gering war, ermöglichen wettbewerbsorientierte Beschaffungsstrategien die Erbringung eines beachtlichen positiven Beitrags zum Unternehmenserfolg. Eine Zielsetzung von E-Procurement-Lösungen ist somit die Entlastung des Einkaufs von operativen Tätigkeiten und dadurch eine Verlagerung von der operativen zur strategischen Beschaffung. Dies gelingt unter anderem durch Automatisierung und Optimierung der Beschaffungsprozesse betriebsübergreifend bis zum Lieferanten.\(^{41}\)

E-Procurement-Systeme versprechen dem einkaufenden Unternehmen eine Reduzierung der Transaktionskosten, schnellere Bestellvorgänge, eine größere Auswahl an Lieferanten sowie eine Steigerung der Effizienz durch standardisierte Einkaufsprozesse. Weitere daraus resultierende Vorteile sind die Eliminierung vieler papierbasierter Arbeitsschritte sowie eine Verbesserung und Rationalisierung des Workflows zwischen Ein- und Verkäufer durch Features zur Verbesserung der Zusammenarbeit. Des Weiteren ermöglicht die IT-Unterstützung durch das Internet eine Senkung der Produktkosten durch Funktionalitäten wie elektronische Ausschreibungen und Auktionen sowie durch einfacheren Zugriff auf neue geographische Märkte.\(^{42}\)

Kapitel 3.4 erörtert, mit Hilfe welcher Funktionalitäten von E-Procurement-Tools die beschriebenen Ziele und Nutzenpotenziale für das beschaffende Unternehmen verwirklicht werden können.

\(^{42}\) vgl. Neef, 2001, S. 128ff
Jedoch nicht nur der Einkauf profitiert von internetbasiertem Beschaffung, auch die Lieferanten ziehen Vorteile daraus. Durch die direkte Anbindung an seine Kunden kann ein Lieferant Aufträge schneller und mit weniger Fehlern erfassen und somit seine Betriebskosten reduzieren. Weiters ermöglichen die enge Zusammenarbeit mit dem Kunden und die bessere Transparenz (zum Beispiel von Lagerbeständen oder der Leistungsbeurteilung) eine weitere Senkung der Einkaufskosten, was wiederum eine kooperative, langfristige Kunden-Lieferanten-Beziehung fördert. Während Neef eine Umsatzsteigerung für den Lieferanten durch im Internet verfügbare Kataloge sieht, kann dies durch den erhöhten globalen Wettbewerb und die Transparenz der Preise jedoch auch zum gegenteiligen Effekt führen.43

Durch die verbreitete Nutzung von E-Procurement-Lösungen haben sich auch der Einkauf und die Rolle des Einkäufers bzw. deren Verantwortlichkeiten verändert. Da viele operative und administrative Tätigkeiten durch die IT-Unterstützung wegfallen, werden nicht mehr alle Mitarbeiter in diesem Bereich benötigt. Es ist daher notwendig, Schulungen im Bereich der strategischen Beschaffung (z.B. Verhandlungstechniken) anzubieten, um das volle Potenzial der E-Procurement-Lösung auszuschöpfen und die Mitarbeiter weiterhin im Unternehmen beschäftigen zu können. Aufgrund der Einführung eines neuen IT-Systems im Einkauf ist die tägliche Arbeit für den Einkäufer zudem vermehrt IT-lastig, auch in diesem Bereich sind eventuell Trainings für die entsprechenden Mitarbeiter nötig. Laut Nekolar hat sich die Theorie, dass Mitarbeiter, die bisher nur administrative Aufgaben übernommen haben, jetzt auch strategische Beschaffungstätigkeiten durchführen, in der Praxis jedoch nicht realisieren lassen.44 Es empfiehlt sich, diesen Aspekt hinsichtlich der Interessen und Fähigkeiten der betroffenen Mitarbeiter zu prüfen, bevor eine solche Lösung im Unternehmen umgesetzt wird.

Nach Reason & Evans steckt das Potenzial von E-Procurement jedoch nicht in der Technologie, sondern in den Änderungen, die eine solche Technologie ermöglicht. Das Internet leistet zwar einen wichtigen Beitrag zur Unterstützung, der volle strategische Nutzen entsteht jedoch nicht durch E-Procurement, sondern durch die strategische Denkweise, welche die Einführung einer E-Procurement-Lösung untermauern soll.45

43 vgl. Neef, 2001, S. 130f
45 vgl. Reason & Evans, 2000, S. 4
3.4 Funktionalitäten von Tools

Während die ersten Werkzeuge zur Unterstützung von Beschaffungsprozessen hauptsächlich Funktionalitäten im operativen Beschaffungsbereich bereitstellten, verheißen moderne Lösungen umfassende Hilfestellung während des gesamten Beschaffungsvorganges, das heißt auch bei Aufgabenstellungen der strategischen Beschaffung.\footnote{vgl. Eyholzer, Kuhlmann, & Münger, 2002, S. 70f}

Die Funktionalitäten dieser Tools lassen sich dabei grob in die in Tabelle 1 angeführten Kategorien einteilen, die in den nachfolgenden Unterkapiteln näher erläutert werden.

<table>
<thead>
<tr>
<th>Kategorien von Funktionalitäten</th>
</tr>
</thead>
<tbody>
<tr>
<td>elektronische Zusammenarbeit</td>
</tr>
<tr>
<td>Entscheidungsunterstützung</td>
</tr>
<tr>
<td>Vertragsmanagement</td>
</tr>
<tr>
<td>elektronische Ausschreibungen</td>
</tr>
<tr>
<td>Rückwärtsauktionen</td>
</tr>
<tr>
<td>elektronische Kataloge</td>
</tr>
<tr>
<td>Beschaffung von direkten Gütern</td>
</tr>
<tr>
<td>Verlagerung v. Tätigkeiten zum Lieferanten</td>
</tr>
<tr>
<td>elektronischer Zahlungsverkehr</td>
</tr>
<tr>
<td>Leistungüberwachung</td>
</tr>
</tbody>
</table>

Tabelle 1: Funktionalitätskategorien von beschaffungsunterstützenden Werkzeugen\footnote{Eigene Darstellung, Daten entnommen aus Eyholzer, Kuhlmann, & Münger, 2002, S. 71f}

Funktionalitäten der einzelnen Werkzeuge zu vergleichen und sich nicht durch die Produktbezeichnung täuschen zu lassen. Einen Marktüberblick über E-Procurement-Lösungen sowie deren Funktionalitäten bieten zum Beispiel Haak & Tönjes50.

3.4.1 Elektronische Zusammenarbeit

50 vgl. Haak & Tönjes, 2003, S. 62ff
51 vgl. Kollmann, 2007, S. 134f
52 vgl. VICS, 2004, S. 5 und Georg, 2006, S. 78
Senkung der Replenishment-Zeit53 von zehn bis fünfzehn auf drei Tage und damit der Entfall von mehr als einem Drittel der Prozessschritte sein.54 Für weiterführende Informationen zu CPFR sei auf die entsprechende Fachliteratur verwiesen.55

3.4.2 Entscheidungsunterstützung

Im Bereich der Beschaffung unterstützen Tools zur Entscheidungsunterstützung (engl. Decision Support Tools) den Entscheidungsträger zum Beispiel bei der Auswahl eines passenden Lieferanten oder bei der Entscheidung zwischen Standardsoftware oder Eigenentwicklung (Make-or-Buy-Entscheidung – siehe auch Kapitel 3.5.4) durch eine zielgerichtete Vorbereitung der Entscheidung sowie durch Vorgabe systematischer Analyseprozesse. Zusammengefasst ist die Entwicklung einer effektiven Beschaffungsstrategie das Ziel von Werkzeugen zur Entscheidungsunterstützung in diesem Umfeld.56

Solche Werkzeuge sind nicht nur für den Beschaffungsprozess, sondern auch für andere Prozesse in einem Unternehmen relevant und existieren aus diesem Grund oftmals bereits vor der Einführung von IT-gestützter Beschaffung.

3.4.3 Vertragsmanagement

Bestimmte Vertragsmanagement-Tools unterstützen zusätzlich die Erstellung von elektronischen Ausschreibungen, die Analyse von Geboten bei Auktionen, sowie die Durchführung von Verhandlungen und Vertragsabschlüssen. Zielsetzungen dieser

53 Zeit für die Wiederauffüllung eines Produktes im Geschäft (von der Entnahme des Artikels durch den Kunden im Geschäft inkl. aller Beschaffungsprozesse und der Produktion des anschließenden Produktes)
54 vgl. Seifert, 2002, S. 72 und S. 121
55 vgl. z.B. Seifert, 2002
Werkzeuge sind die Reduzierung von Einkaufspreisen, Qualitäts- und Opportunitätskosten58 sowie die Verkürzung der Zeit, in der ein Produkt im Unternehmen eingeführt wird.59

3.4.4 Elektronische Ausschreibung

Eine Ausschreibung im herkömmlichen Sinn soll nach der Identifizierung des Bedarfs für ein Produkt oder eine Dienstleistung dabei helfen, einen Überblick über den betroffenen Markt zu erhalten sowie neue Lieferanten zu finden, diese miteinander zu vergleichen und durch den Wettbewerb der Lieferanten untereinander bessere Preise zu erzielen. Der Ausschreibungsprozess von der Identifizierung des Lieferanten bis hin zur Auswertung der abgegebenen Angebote kann aus Abbildung 4 entnommen werden.60

![Abbildung 4: Herkömmlicher Ausschreibungsprozess61](image)

3.4.5 Rückwärtsauktionen

Eine klassische Auktion (z.B. bei Ebay) ist verkäuferorientiert, das heißt die Auktion wird vom Verkäufer initiiert und mehrere Käufer bieten auf das zu versteigernde Produkt bis zu

58 „Nutzenentgang, der sich daraus ergibt, dass die höchst bewertete Alternative aus den zur Verfügung stehenden Handlungsmöglichkeiten nicht gewählt wurde.“ (Thommen & Achleitner, 2003, S. 443)

59 vgl. Ross, 2003, S. 254

60 vgl. Stoll, 2007, S. 28f

61 Modifiziert nach Stoll, 2007, S. 29

62 vgl. Aust, Diener, Engelhardt, & Lüth, 2001, S. 57ff

63 http://www.covisint.com
geheim ab. Nach Ablauf der Auktionszeit werden alle Gebote gesichtet, der Bieter mit dem niedrigsten Preis erhält den Zuschlag.65

3.4.6 Elektronische Kataloge

Bei elektronischen Katalogen (auch Katalogmanagementsysteme genannt) wird nach der Katalogverantwortlichkeit zwischen einkaufseitigen (Buy-Side), verkaufsseitigen (Sell-Side) und 3rd-Party Katalogen unterschieden. Verfügbare Lösungen unterstützen im Funktionsumfang den gesamten operativen Beschaffungsprozess von der Überprüfung der Verfügbarkeit des Gutes über den Genehmigungsprozess bis hin zu Wareneingang und Rechnungsabwicklung.66

Bei \textbf{verkaufsseitigen Katalogen} übernimmt der Lieferant die Organisation seiner Artikel in einem Katalog, den er ausarbeitet und pflegt und seinen Kunden über einen Online-Shop (z.B. Intershop, SAP Online-Store, Dell) zur Verfügung stellt. Für das beschaffende Unternehmen entstehen bei dieser Alternative keine weiteren Kosten. Ein Nachteil ist jedoch, dass ein Vergleich der Preise verschiedener Lieferanten nur mit hohem Aufwand möglich ist, da der Kunde in diesem Fall mehrere verschiedene Online-Shops besuchen müsste. Daher ist diese Variante hauptsächlich für Artikel geeignet, die speziell bzw. konfigurier- oder anpassbar sind.67

Bei \textbf{Buy-Side-Katalogen} werden Artikel von diversen Lieferanten, die vorab in Katalogen zur Verfügung gestellt werden, vom Einkäufer in sogenannten Multi-Lieferanten-Katalogen (MLK) organisiert und den Mitarbeitern intern im beschaffenden Unternehmen über eine einheitliche Oberfläche zur Verfügung gestellt. Dies erleichtert den Produktvergleich und ermöglicht eine effiziente Suche von Gütern bei verschiedensten Lieferanten. Der hohe Administrationsaufwand durch die Erstellung und Pflege des Kataloges und benötigte Zusatzsoftware (z.B. Commerce One, Ariba, SAP B2B Procurement) sind jedoch oftmals Nachteile dieser Lösung.68

Bei \textbf{3rd-Party Katalogen} übernimmt ein Dienstleister die Integration der Kataloge mehrerer Zulieferer in einen MLK, auf den wiederum mehrere potenzielle Käufer über das

65 vgl. Wannenwetsch & Nicolai, 2002, S. 114
66 vgl. Wannenwetsch & Nicolai, 2002, S. 123f und Nekolar, 2003, S. 8
67 vgl. Ebel, 2007, S. 165 und Stoll, 2007, S. 22
68 vgl. Ebel, 2007, S. 164 und Wannenwetsch & Nicolai, 2002, S. 123
Internet zugreifen können. Der Dienstleister kann neben der zentralen Pflege der Kataloge noch zusätzliche Dienstleistungen erbringen.⁶⁹

Eine Sonderform von Buy-Side-Katalogen sind so genannte Desktop Purchasing Systeme (DPS).

„Unter einem Desktop Purchasing System wird eine Softwareapplikation verstanden, welche die automatisierte Abwicklung von Beschaffungstätigkeiten von Gütern mit geringer strategischer Bedeutung und einem hohen Automatisierungspotential ermöglicht.“⁷⁰

Ein solches System ermöglicht es den Mitarbeitern, bestimmte Produkte vom Arbeitsplatz (Desktop) aus über ihren Computer ohne der direkten Beteiligung der Einkaufsabteilung zu beschaffen. Desktop Purchasing Systeme werden hauptsächlich für die Beschaffung von C- oder MRO (Maintenance, Repair & Operations)-Gütern⁷¹ verwendet, welche pro Artikel zwar einen niedrigen Wert, insgesamt jedoch ein hohes Beschaffungsvolumen aufweisen und von vielen Lieferanten mit vergleichbarer Qualität angeboten werden. Des Weiteren ist das Beschaffungsrisiko bei diesen Gütern niedrig und die Transaktionskosten für die Durchführung der Beschaffung übersteigen den Wert des zu beschaffenden Artikels teilweise um ein Vielfaches.⁷²

In Abbildung 5 ist der beispielhafte Prozess beim Desktop Purchasing vom Bedarf bis zur Zahlungsabwicklung mit dem Lieferanten abgebildet. Der Vorgang, bei dem der Bedarfsträger selbst den Wareneingang überprüft und im DPS bucht, wird als Desktop Receiving bezeichnet und stellt eine Erweiterung des DPS-Konzeptes dar. Im Vergleich zu einem MLK bietet ein DPS noch weitere Funktionen wie eine umfassende Suche oder eine Anbindung an das dahinterliegende Backend-System.

Durch die Vorgehensweise beim Desktop Purchasing wird der Einkäufer stark entlastet, da besonders arbeitsintensive und auf Papier ausgeführte Tätigkeiten zum Großteil an den Bedarfsträger übertragen werden. Damit ist der gesamte operative Beschaffungsprozess ohne die Mithilfe von Einkauf und Buchhaltung abgeschlossen, diese führen nur stichprobenartige Kontrollen zur Überprüfung des Prozesses durch. Daraus resultierende

⁷⁰ Nekolar, 2003, S. 36
⁷¹ Verbrauchsstoffe oder Bedarfsgüter wie z.B. Büroartikel oder Werkzeuge (vgl. Merz, 2002, S. 781)
Vorteile sind die Senkung der Artikelpreise, die Verkürzung der Prozesszeiten sowie eine Reduktion von Verwaltungskosten.73

Abbildung 5: Prozess Desktop Purchasing74

3.4.7 Beschaffung von direkten Gütern

Während die Beschaffung indirekter Güter durch die Hilfe von Katalogmanagementsystemen unterstützt werden kann (vgl. Kapitel 3.4.6), gibt es eigene Lösungen für die Beschaffung direkter Güter75. Diese Hilfsmittel werden auch Plan-Driven Purchasing Tools genannt und bezeichnen Werkzeuge, welche auf der Basis von Planungssystemen (z.B. ERP-Systeme) automatisch und ohne manuellen Eingriff Bestellungen für Güter bei den zuständigen Lieferanten platzieren. Mithilfe dieser IT-Unterstützung können direkte Güter effizient und effektiv beschafft und damit Einsparungen im Beschaffungsprozess generiert werden. Durch Wegfall des manuellen Eingriffs wird des Weiteren die Versorgungssicherheit der strategisch wichtigen Güter im Unternehmen erhöht.76

Plan-Driven-Purchasing kann zum Beispiel mit dem Modul mySAP SRM realisiert werden.77

73 vgl. Wannenwetsch & Nicolai, 2002, S. 125f
74 Modifiziert nach Kleineicken, 2002, S. 51
75 Güter, aus denen direkt die Produkte/Dienstleistungen des beschaffenden Unternehmens erzeugt werden (vgl. Merz, 2002, S. 781)
77 vgl. SAP, 2008
3.4.8 Verlagerung von Tätigkeiten zum Lieferanten

Die Verlagerung von Tätigkeiten zum Lieferanten wird auch als Supplier Self-Service bezeichnet. Im Sinne der Optimierung von Beschaffungsprozessen sollen Aufgaben ohne strategischen Charakter (z.B. die Lagerhaltung) bestmöglich an Lieferanten abgetreten werden. Werkzeuge dieser Art erlauben Lieferanten einen beschränkten Zugriff auf das System des beschaffenden Unternehmens. Neue Lieferanten müssen sich zuerst registrieren und durchlaufen einen Review-Prozess bevor Sie Zugriff auf das System erhalten.78

Folgende beispielhafte Aktivitäten kann der Lieferant auf dem System durchführen:79

- Aktualisierung von Adress- und Kontaktinformationen
- Abfrage von Informationen zu Kontodaten mittels Reports (z.B. Bestellhistorie, Auftragsbestätigungen, Rechnungs- und Zahlungsinformationen, Details zu Verträgen,…)
- Abfrage von Lagerbeständen (um zum Beispiel fehlende Ware bei Unterschreitung des Bestandes ohne Aufforderung zu liefern) oder spezifischen Bestelldaten
- Erstellung einer eigenen Website, um sich selbst und seine Produkte vorzustellen
- Bereitstellung von Produktinformationen
- Erfassung von Rechnungsdaten.

3.4.9 Elektronischer Zahlungsverkehr

Elektronischer Zahlungsverkehr (engl. E-Payment) ist ein Schlüsselfaktor bei der Realisierung einer elektronischen Supply Chain. Aufgrund der hohen Transaktionsvolumina kommt den Sicherheitsanforderungen im B2B-Bereich die größte Bedeutung zu. Mögliche Lösungen in diesem Bereich zielen dabei auf eine gemeinschaftliche Abwicklung der Zahlung zwischen den einzelnen Unternehmen in der Wertschöpfungskette ab. Tools im E-Payment-Bereich sollen Verwaltungskosten reduzieren und zugleich die Wirtschaftlichkeit der Beschaffungs- und Zahlungsprozesse...

78 vgl. Deshmukh, 2006, S. 197 und Eyholzer, Kuhlmann, & Münger, 2002, S. 72
maximieren. EBPP (Electronic Bill Payment and Presentment) und die Purchasing Card repräsentieren E-Payment-Lösungen im B2B-Bereich.\(^{80}\)

3.4.10 Leistungsüberwachung

Werkzeuge zur Leistungsüberwachung (engl. Relationship and Performance Monitoring Tools) ermöglichen dem beschaffenden Unternehmen die Sammlung und Auswertung aller für den Einkauf relevanter Daten nach diversen Kriterien. Von den Lieferanten werden dabei unter anderem Messgrößen wie die Qualität (z.B. Reklamationsstatistik), die Leistungsfähigkeit der Zusammenarbeit mit dem Kunden sowie die Geschäftsabwicklung durch den Lieferanten (z.B. Liefertermintreue) gemessen.\(^{81}\)

Die Auswertungen, die den Lieferanten betreffen, dienen als Basis für eine Beurteilung und ermöglichen eine zeitnahe Reaktion zur Einleitung von passenden Gegenmaßnahmen bzw. in weiterer Folge für etwaige Abänderungen im Vertragsmanagement (siehe auch Kapitel 3.4.3). Zusätzlich zu den Lieferanten betrifft das Monitoring auch Prozessbeteiligte innerhalb des Unternehmens.\(^{82}\)

Der Nutzen eines Tools zur Leistungsüberwachung kommt am Besten zum Tragen, wenn Lieferanten und interne Prozessbeteiligte jederzeit Zugriff auf ihre aktuellen Leistungsdaten haben (zum Beispiel über ein Unternehmensportal) und damit zeitnah Maßnahmen zur Verbesserung ihrer Performance entwickeln und durchführen können.

3.5 Vorgehensweise bei einem E-Procurement-Projekt

Die Vorgehensweise bei einem E-Procurement-Projekt unterscheidet sich grundsätzlich nicht von der Vorgehensweise bei anderen IT-Projekten. Im ersten Schritt soll festgelegt werden, welche Ziele und Nichtziele mit der E-Procurement-Lösung erreicht werden sollen, abgeleitet von den Geschäftszielen des Unternehmens im Allgemeinen und den Zielen der Beschaffungsabteilung im Speziellen. Im nächsten Schritt ist es notwendig, Ist-Prozesse sowie die bestehende IT-Landschaft zu dokumentieren (falls noch keine Dokumentation vorhanden ist). Gleichzeitig soll überprüft werden, ob im Unternehmen

\(^{80}\) vgl. Wannenwetsch & Nicolai, 2002, S. 207ff

noch andere Projekte (insbesondere Change-Management und IT-Projekte) geplant oder bereits in der Durchführungsphase sind. Der nächste Schritt im Projekt ist die Modellierung der Sollprozesse sowie die Make-or-Buy-Entscheidung (siehe auch Kapitel 3.5.4). Falls das Unternehmen sich gegen eine Eigeneimplementierung entscheidet, findet als nächstes die Softwareauswahl statt (siehe auch Kapitel 3.5.5), für die es gilt, eine Liste der unternehmensspezifischen Anforderungen anzufertigen und diese an ausgewählte Anbieter auf dem Markt zu schicken und ein Angebot einzuholen. Danach steht die Entscheidung für ein spezifisches Werkzeug an, oftmals ist ein Pilotlauf mit interessanten Lösungen für die Entscheidungsfindung von Vorteil. Nachdem sich das Unternehmen für ein Produkt entschieden hat, ist der letzte Schritt die erfolgreiche Umsetzung des Projektes.\(^{83}\)

An dieser Stelle wird das Thema Projektmanagement in IT-Projekten (z.B. Anforderungsanalyse) nicht weiter vertieft, da dies den Rahmen der Arbeit sprengen würde. Es sei stattdessen auf die entsprechende Fachliteratur verwiesen.\(^{84}\)

3.5.1 Besonderheiten bei E-Procurement-Projekten

Eine E-Procurement-Lösung soll nicht als Abteilungslösung nur für die Beschaffung gelten, sondern als Gesamtlösung für das ganze Unternehmen betrachtet werden. Aus diesem Grund ist eine Optimierung sämtlicher Prozesse im Unternehmen sinnvoll, eine Anpassung der Beschaffungsprozesse jedoch unumgänglich, bevor die Umsetzung der neuen, IT-gestützten Einkaufsstrategie erfolgt.\(^{85}\)

Bei der Ist-Analyse im Unternehmen ist es laut Shields nicht unbedingt sinnvoll, viel Zeit in die Untersuchung der Ist-Abläufe zu investieren sowie die aktuellen Prozesse in einem Flowchart abzubilden. Durch die intensive Beschäftigung mit den aktuellen Prozessen besteht die Gefahr, dass die alten Prozesse beibehalten und nicht optimiert werden. Sinnvoller ist es, die Geschäftsprozesse so anzupassen, wie sie von der neuen Software unterstützt werden, das heißt eine Verbesserung der Geschäftsprozesse durch Begreifen und Ausnutzen der Standardfähigkeiten des Produktes zu erreichen.\(^{86}\)

Falls die Ist-Prozesse doch im Vorfeld modelliert werden, sollten die Verantwortlichen diesen Aspekt zumindest bei der Festlegung und Planung der Sollprozesse beachten. Die

\(^{83}\) vgl. Schulze & Koller, 2002, S. 118f
\(^{85}\) vgl. Nekolar, 2003, S. 13
\(^{86}\) vgl. Shields, 2002, S. 208f und S. 225
Einführung einer E-Procurement-Lösung ganz ohne Kenntnisse des aktuellen Beschaffungsablaufes ist genauso undenkbar. Es gilt, einen sinnvollen Weg zwischen den beiden Varianten zu finden.

3.5.2 Auswahl von geeigneten Beschaffungsartikeln

Bei der Ist-Analyse ist es des Weiteren nötig, neben der Untersuchung der aktuellen Beschaffungsprozesse auch das Beschaffungsvolumen eines Unternehmens zu analysieren. Dies wird typischerweise durch folgende drei Schritte ausgewertet.\(^\text{87}\)

- Durchführung einer ABC-Analyse des Beschaffungsvolumens nach Materialgruppen
- Erfassung des Einsparungspotenzials pro Materialgruppe
- Untersuchung der Relation zwischen Einsparungen bei Produkt- und Prozesskosten.

Aus diesem Grund sind für A- und B-Güter besonders E-Procurement-Lösungen sinnvoll, die eine Reduktion der Produktkosten anstreben (z.B. Reverse Auctions), während bei C-Gütern eine Verminderung der Prozesskosten im Vordergrund stehen soll (z.B. DPS).

\(^\text{87}\) vgl. Aust, Diener, Engelhardt, & Lüth, 2000, S. 59ff
Um eine exakte Zuordnung zwischen Produkt und geeigneter IT-Unterstützung zu erhalten, macht es Sinn, die ABC-Analyse mit einer XYZ-Analyse zu kombinieren. Im Gegensatz zur ABC-Analyse betrachtet die XYZ-Analyse den Verbrauchsverlauf innerhalb einer Planperiode, das heißt ob ein Produkt in gleichbleibenden Mengen verbraucht wird oder der Verbrauch gewissen Schwankungen unterliegt. Ein X-Gut ist relativ ausgeglichen im Verbrauch. Der Verbrauch eines Z-Gutes ist hingegen eher zufällig und schwer vorherzusehen.\(^{89}\)

<table>
<thead>
<tr>
<th>Verbrauchsverlauf</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>eCollaboration</td>
<td></td>
<td>Buy-Side Kataloge (inkl. DPS)</td>
</tr>
<tr>
<td>Y</td>
<td>eAusschreibung und Reverse Auctions</td>
<td>eAusschreibung</td>
<td>katalogbasierte Marktplätze</td>
</tr>
<tr>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Kombinierte ABC/XYZ-Analyse\(^{90}\)

Die Kombination der beiden Analysen und die geeigneten E-Procurement-Strategien können aus Tabelle 2 entnommen werden. Dabei sticht besonders ins Auge, dass Produkte mit höherem Einkaufsvolumen und konstanter Vorhersehbarkeit des Verbrauchs die umfassendste strategische Zusammenarbeit mit dem Lieferanten begünstigen, während auf der anderen Seite der Skala hauptsächlich die Unterstützung der operativen Beschaffung in Form von elektronischen Katalogen sinnvoll ist.

3.5.3 Auswahl von Lieferanten

Um eine E-Procurement-Lösung einzuführen, genügt es jedoch nicht, nur die Produkte und deren Einkaufsvolumen zu kennen. Zusätzlich ist es nötig, in der Analysephase noch passende Online-Lieferanten auszuwählen, da die gewünschte Optimierung nur durch die Unterstützung geeigneter Lieferanten umgesetzt werden kann. Bereits vorhandene aber auch neue Lieferanten müssen die erforderlichen technologischen Bedingungen erfüllen bzw. sich bereit erklären, diese umzusetzen.\(^{91}\)

Besonders für strategisch wichtige Produkte, bei denen ein Unternehmen eine elektronische Zusammenarbeit mit dem Lieferanten anstreben möchte, sind Auswahlkriterien wie die Beziehung zum Lieferanten, technische Fähigkeiten,

\(^{90}\) Modifiziert nach Stoll, 2007, S. 19
\(^{91}\) vgl. Kollmann, 2007, S. 130f

3.5.4 Make-or-Buy-Entscheidung

Beim Auswahlprozess von Software steht am Beginn die Frage, ob die Anwendung im Unternehmen selbst entwickelt oder zugekauft werden soll (Make-or-Buy-Entscheidung). Da in den meisten Fällen schon geeignete Standardsoftware auf dem Markt verfügbar ist, die bei Bedarf an die individuellen Anforderungen des Unternehmens angepasst werden kann (Customizing), ist nur weniger als ein Prozent des in Unternehmen vorhandenen Programmcodes Eigenentwicklung, welche wiederum von der unternehmenseigenen IT-Abteilung durchgeführt oder an externe IT-Spezialisten vergeben werden kann. Individualsoftware wird hauptsächlich bei wettbewerbskritischen Anwendungen eingesetzt oder wenn sich das Unternehmen dadurch einen Wettbewerbsvorteil gegenüber der Konkurrenz ausrechnet. Weitere Vorteile der Eigenentwicklung sind die Unabhängigkeit vom Softwareanbieter sowie in manchen Fällen die verkürzten Einführungszeiten, da kein Customizing der Anwendung nötig ist.\footnote{vgl. Weder, 2003, S. 21f}

Für Standardsoftware sprechen dagegen folgende Gründe: \footnote{vgl. Weder, 2003, S. 22}

- meist preiswerter als Individualsoftware und sofort verfügbar
- aufgrund der größeren Erfahrung des Anbieters (und dessen Softwareentwicklern) ist Standardsoftware zum Großteil qualitativ hochwertiger
- Einführung bedingt Analyse und Optimierung der Geschäftsprozesse im Unternehmen
- (Weiter-)Entwicklung, Wartung und Pflege binden keine Ressourcen im Unternehmen
- Standardisierung (Erleichterung des Datenaustausches mit Partnern).

Aufgrund des zunehmenden Standardisierungsgedankens in Unternehmen soll wenn möglich auf Standardsoftware zurückgegriffen werden.
Bei der Entscheidung, welche E-Procurement-Lösung in einem Unternehmen eingesetzt werden soll, existieren grundsätzlich drei Varianten.95

- Eigenentwicklung der Lösung und Integration in das bestehende ERP-System
- Entscheidung für eine „Best-of-Breed“-Anwendung96 und Einbindung in die existenten Systeme
- Erwerb des entsprechenden Moduls vom eigenen ERP-Hersteller (falls dieses existiert).

Die erste Variante macht (wie bereits vorher angeführt) in einem wettbewerbskritischen Einsatzbereich Sinn bzw. wenn es für die spezifische Aufgabe keine fertige Anwendung am Markt gibt. Der Vorteil der dritten Variante ist die vollständige Einbindung der Lösung in die weiteren, bereits genutzten Module des ERP-Herstellers. Obwohl die Funktionalitäten dieser Alternative nicht an den Umfang einer „Best-of-Breed“-Anwendung herankommen, reichen die angebotenen Funktionen für die Zielerreichung vieler Unternehmen vollkommen aus. Beim Einsatz von „Best-of-Breed“-Anwendungen muss weiterhin ein Teil des IT-Budgets für die Schnittstellenwartung zwischen den verschiedenen Systemen aufgewendet werden, bei Versionswechseln sind oft aufwändige Neuimplementierungen der Schnittstellen nötig. Falls die zusätzlichen Funktionen einer „Best-of-Breed“-Lösung jedoch von großer Bedeutung für ein Unternehmen sind, kann sich der Erwerb einer solchen Lösung ungeachtet der Schnittstellenproblematik rechnen. Außerdem gibt es bereits viele Anbieter von Middleware zur Zentralisierung und Vereinfachung der Integration, die genau für diese Problematik entwickelt wurden, was die Einbindung von „Best-of-Breed“-Produkten wiederum erleichtert (siehe auch Kapitel 3.7).97

95 vgl. Shields, 2002, S. 11
96 Bestes Produkt in einem bestimmten Bereich am IT-Markt (vgl. Heinrich & Lehner, 2005, S. 104)
97 vgl. Shields, 2002, S. 11f
integrierten Best-of-Breed-Lösungen und weg vom Konzept eines Produktes für alle Anforderungen.98

3.5.5 Kriterien bei der Auswahl von Standardsoftware

- Schnittstelle zum unternehmenseigenen ERP-System (Module Materialwirtschaft, Finanzbuchhaltung)
- Möglichkeiten und Aufwand der Anbindung für die Lieferanten (direkte Anbindung, Anbindung über Weboberfläche)
- Anpassbarkeit an veränderte Unternehmensanforderungen (Notwendigkeit zur langfristigen Zusammenarbeit mit dem Softwareanbieter)
- Flexibilität hinsichtlich der Integration zusätzlicher Systeme oder Prozesse bzw. einer Erweiterung des Produktsortiments
- Möglichkeit zur Auslagerung des Systems an einen Application Service Provider (ASP) oder an eine Plattform
- unterstützte Formate bei elektronischen Katalogen (z.B. BMEcat, RosettaNet)
- Sicherheit und Zuverlässigkeit des Systems.

Jedes Unternehmen muss für sich entscheiden, welche Kriterien für den speziellen Anwendungsfall herangezogen werden und wie die Gewichtung der einzelnen Punkte vorgenommen wird.

98 vgl. Dorrhauer & Ziender, 2004, S. 149 und Honegger, 2005, S. 44f
99 vgl. Allweyer, 2003, S. 33ff

<table>
<thead>
<tr>
<th>Produktbezogene Kriterien</th>
<th>Herstellerbezogene Kriterien</th>
<th>Aufwandsbezogene Kriterien</th>
<th>Anwenderbezogene Kriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>funktionale Kriterien (Erfüllung spezifischer Anforderungen an das Produkt)</td>
<td>Größe des Unternehmens, Anzahl der Mitarbeiter</td>
<td>Lizenz-, Wartungs-, Implementierungs- und Hardwarekosten (inkl. Datenbank und Betriebssystem)</td>
<td>Beurteilung selektierter Anwender bei Workshops mit Testimplementierung</td>
</tr>
<tr>
<td>Fähigkeit zur Kommunikation mit anderen Systemen</td>
<td>Produktentwicklungsstrategie und Leistungsfähigkeit des Herstellers</td>
<td>Kosten für Roll-Outs an anderen Standorten</td>
<td>Output aus Fachgesprächen mit Key-Users</td>
</tr>
<tr>
<td>Reifegrad der Software</td>
<td>Marktsituation (Wettbewerb, Finanzen, ...)</td>
<td>Lizenzen und Beratungsleistungen für Folgeprojekte</td>
<td>Referenzbesuche bei Firmen</td>
</tr>
<tr>
<td>branchenspezifische Funktionalität</td>
<td>Branchenerfahrung (Referenzliste)</td>
<td>Kosten für Betriebsführung, Datenpflege und Releasewechsel</td>
<td>Gespräche/Umfragen mit anderen Kunden</td>
</tr>
<tr>
<td>Flexibilität des Produktes</td>
<td></td>
<td>Kosten für Roll-Outs an anderen Standorten</td>
<td></td>
</tr>
<tr>
<td>Anzahl der Installationen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produkt-Support</td>
<td>vorhandene Dokumentation (Schulungsunterlagen, Checklisten, ...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Auswahlkriterien für Standardsoftware\footnote{Eigene Darstellung, Daten entnommen aus Weiss, 2005, S. 18f und Shields, 2002, S. 90ff}

Mit Hilfe von Werkzeugen wie der Nutzwertanalyse, deren Vorgehensweise in Kapitel 4.2.2.3 näher erläutert wird, soll die endgültige Entscheidung für das Produkt eines Herstellers getroffen werden.

3.6 Implementierungsvarianten

Zusätzlich zur Fragestellung, ob eine E-Procurement-Lösung selbst erstellt oder als Standardsoftware zugekauft wird (vgl. Kapitel 3.5.4), ist es von Interesse, wie die Lösung im Unternehmen implementiert wird.

\footnote{vgl. Shields, 2002, S. 108ff}
<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Individuelles Supplier-Portal</th>
<th>Eigenes Hosting eines Standardtools</th>
<th>Standardtool vom ASP</th>
<th>Elektronischer Marktplatz mit Standardtool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lieferantenbasis</td>
<td>eigener Aufbau</td>
<td>eigener Aufbau</td>
<td>eigener Aufbau</td>
<td>Lieferantenbasis durch Marktplatz vorgegeben</td>
</tr>
<tr>
<td>Nutzung weiterer Dienstleistungen vom Toolanbieter</td>
<td>nein</td>
<td>gegebenenfalls</td>
<td>häufig</td>
<td>häufig</td>
</tr>
<tr>
<td>ERP-Kopplung</td>
<td>möglich</td>
<td>möglich</td>
<td>möglich, aber häufig nicht implementiert</td>
<td>nach größerer Abstimmung möglich</td>
</tr>
<tr>
<td>Technischer Aufwand für beschaffendes Unternehmen</td>
<td>sehr hoch</td>
<td>hoch</td>
<td>gering</td>
<td>gering</td>
</tr>
<tr>
<td>Kostenverlauf</td>
<td>zu Anfang hoch, dann sinkend</td>
<td>zu Anfang hoch, dann sinkend</td>
<td>konstant</td>
<td>konstant</td>
</tr>
<tr>
<td>Aufwand für Einführungsprojekt</td>
<td>abhängig vom Funktionsumfang</td>
<td>abhängig vom Funktionsumfang</td>
<td>abhängig vom Funktionsumfang</td>
<td>abhängig vom Funktionsumfang</td>
</tr>
</tbody>
</table>

Tabelle 4: Vergleich von Implementierungsvarianten

Entscheidet sich ein Unternehmen für eine Individuallösung, wird diese üblicherweise auch vom Unternehmen selbst in Form eines individuellen Supplier-Portals betrieben. Mit dieser Variante kann verhindert werden, dass materialwirtschaftliche Stamm- und Bewegungsdaten sowohl im ERP- als auch im E-Procurement-System redundant vorgehalten werden müssen. Weiters ist diese Variante für Unternehmen mit sehr speziellen Anforderungen an die Lösung von Interest. Fällt der Entschluss auf eine Standardlösung, hat das Unternehmen die Möglichkeit, diese selbst zu hosten, das heißt auf eigenen Computern zu installieren, anzupassen, einzuführen und unabhängig von anderen Firmen zu verwenden. Diese Möglichkeit ist vor allem für Konzerne interessant, bei denen die Lösung von mehreren Tochterunternehmen genutzt wird und die ihr ERP-System an die E-Procurement-Lösung anbinden möchten. Die Lösung on-demand von einem ASP oder über einen elektronischen Marktplatz zu verwenden, stellt zwei weitere Implementierungsvarianten dar, deren Abgrenzung jedoch schwierig und deshalb nicht immer möglich ist. Ebenso kann eine Kombination der verschiedenen Möglichkeiten

102 Modifiziert nach Appelfeller & Buchholz, 2005, S. 223
sinnvoll sein, zum Beispiel wenn verschiedene Funktionalitäten unterschiedlich stark genutzt werden.\footnote{vgl. Appelfeller & Buchholz, 2005, S. 19f und S. 222}

3.6.1 Elektronische Marktplätze

„Elektronische Marktplätze sind virtuelle Orte im Internet, an denen einer Vielzahl von Anbietern und Nachfragern die Möglichkeit gegeben wird, Geschäftstransaktionen vorzubereiten und teilweise bzw. vollständig durchzuführen.“\footnote{Wannenwetsch & Nicolai, 2002, S. 110}

Darüber hinaus kann nach dem Zugang in offene (für alle Teilnehmer offen) und geschlossene Marktplätze (Einschränkung der Teilnehmerzahl anhand firmenpolitischer
Grundsätze) unterschieden werden. Eine weitere Differenzierung ist anhand der angebotenen Transaktionsmechanismen (z.B. Ausschreibungen, Auktionen, elektronische Kataloge) möglich.109

Nach Merz sind zahlreiche der im Internet verfügbaren Marktplätze eine Kombination aus verschiedenen Komponenten wie E-Procurement, Produktentwicklung und Supply Chain beim Marktplatz Covisint. Aus diesem Grund werden solche Marktplätze auch elektronische Marktplatzsysteme genannt.110

Die Vorteile eines elektronischen Marktplatzes liegen, wie aus Tabelle 4 entnommen werden kann, im geringen technischen Aufwand (Anschaffung von Hard- und Software entfällt) sowie bei den konstanten Kosten. Zusätzlichen Nutzen ziehen die beschaffenden Unternehmen aus der schnellen Umsetzung, da im besten Fall bereits eine Vielzahl der Lieferanten an den Marktplatz angebunden ist. Nachteile sind im Bereich der geringen Anpassbarkeit und der aufwändigen ERP-Kopplung zu sehen.111

Ein Beispiel für einen elektronischen Marktplatz stellt SupplyOn112 dar.

3.6.2 Portale

Der Begriff Portal wird nach Bauer folgendermaßen definiert:

„Ein Portal ist eine Website, die als Einstieg in einen bestimmten Bereich des Internets dient.“113

Nach Großmann & Koschek:

„Ein Portal ist ein zentraler und persönlicher Einstieg (Single Point of Access) in die Informationswelt des Internet oder Intranet, von dem aus Verbindungen zu den relevanten Informationen und Diensten hergestellt werden können.“114

Die Verwendung des Begriffes Portal stützt sich in dieser Arbeit auf die Definition von Großmann & Koschek, da diese Definition neben dem Internet auch das Intranet und wichtige Portalfunktionen wie die Personalisierung einschließt.

Nach Bauer sind die wichtigsten Funktionalitäten, die ein Portal benötigt:115

109 vgl. Wannenwetsch & Nicolai, 2002, S. 111f
110 vgl. Merz, 2002, S. 812
111 vgl. Appelfeller & Buchholz, 2005, S. 20
112 http://www.supplyon.com
113 Bauer, 2001, S. 19
114 Großmann & Koschek, 2005, S. 28
115 vgl. Bauer, 2001, S. 38ff
• **Personalisierung**
 (Registrierung des Benutzers und Anmeldung beim Portalbesuch)

• **Benutzerverwaltung und Sicherheitsdienste**
 (Bearbeitung von Stammdaten, Zusammenfassung von Usern zu Gruppen, Vergabe von Zugriffsrechten für bestimmte Benutzertypenprofile)

• **Webpublishing und dynamischer Content**

• **externe Webapplikationen**
 (Plattform- und Ortsunabhängigkeit)

• **Integration von Unternehmensanwendungen**
 (Zugriff auf Daten existierender Unternehmenssysteme).

Portale können sowohl bei einer individuellen Lösung (zum Beispiel individuelles Supplier-Portal) als auch beim eigenen Hosting eines Standardwerkzeuges (zum Beispiel Integration einer Lösung in ein Unternehmensportal) herangezogen werden.

![Abbildung 6: Kategorisierung von Portalen](image)

116 Modifiziert nach Großmann & Koschek, 2005, S. 31

Das geplante B2B-Portal für Lieferanten der Firma Datacon im Fallbeispiel (siehe Kapitel 5) fällt aufgrund der geschlossenen Benutzergruppe (ausgewählte Lieferanten und Mitarbeiter) sowie des horizontalen Fokus auch in den Bereich eines prozessorientierten Unternehmensportals.

3.6.3 Application Service Provider (ASP)

Wie aus Tabelle 4 ersichtlich, liegen die Vorteile für das beschaffende Unternehmen (wie bei den elektronischen Marktplätzen) in den konstanten und daher planbaren Kosten sowie im geringen, technischen Aufwand bei der Umsetzung und in der kurzen Vertragslaufzeit. Außerdem bieten ASP zusätzliche Dienstleistungen, die ihre Kunden von administrativen Aufgaben entlasten, wie zum Beispiel die Registrierung der Lieferanten sowie die Verwaltung der Benutzerdaten. Einen Nachteil stellen die geringen Anpassungsmöglichkeiten an die eigenen Anforderungen dar.

Im Bereich E-Procurement gewinnen solche Lösungen aufgrund der angeführten Vorteile vor allem bei kleinen und mittleren Unternehmen (KMU) an Bedeutung.\footnote{vgl. Becker, Lauterbach, Schröder, & von Bülow, 2007, S. 64} Gründe, warum sich Unternehmen (vor allem Großunternehmen und Konzerne) doch gegen diese
Implementierungsvariante entscheiden, sind vor allem die Abhängigkeit vom ASP sowie Risiken bezüglich Datenschutz und –sicherheit. In bereits bestehenden IT-Abteilungen können auch Widerstände seitens des Personals oder die IT-Strategie die Einführung einer solchen Lösung verhindern.120

Beispiele für eine SRM-Lösung von einem ASP bieten die Fa. Onventis GmbH121 mit Ihrem Produkt TradeCore SRM sowie die Fa. Newtron AG122 mit newtron SRM an.

3.7 Integration

Ein durchgehender Materialfluss vom Lieferanten zum beschaffenden Unternehmen bedingt einen entsprechenden Informationsfluss zur Steuerung und Durchführung der betroffenen Geschäftsprozesse, was als Integration bezeichnet wird.123

\begin{footnotesize}
\begin{itemize}
\item 120 vgl. Knolmayer, 2000, S. 445
\item 121 http://www.onventis.de
\item 122 http://www.newtron.net
\item 123 vgl. Glöckle, 2007, S. 7
\item 124 vgl. Schubert, 2003, S. 3 und S. 11ff und Myrach, 2005, S. 6 und S. 8
\end{itemize}
\end{footnotesize}
Die beiden Konzepte EAI und B2BI rücken immer näher zusammen und können fast gar nicht mehr unabhängig voneinander analysiert werden, da es bei beiden Vorgehensweisen schlussendlich um die Verbindung von Anwendungen geht.125

Nach Silberberger bieten Web Services-Architekturen im Vergleich zu konventionellen EAI-Werkzeugen merkliche Kosten- und Flexibilitätsvorteile bei der Koppelung mit Lieferanten, welche typischerweise heterogene IT-Landschaften vorweisen.127

Integrationsvorhaben sind im Vorfeld kritisch zu betrachten. Damit sich Investitionskosten sowie laufende Kosten für den Betrieb der Integrationslösung rechnen, muss eine Vielzahl von Transaktionen automatisiert abgewickelt werden. Eine Vollintegration ist daher für KMUs nicht immer rentabel.128 Trotzdem sind auch die Vorzüge einer integrierten Lösung nicht von der Hand zu weisen. Dazu zählen vor allem aktuelle und redundanzfreie Daten und Prozesse sowie die Transparenz des Systems für alle Geschäftspartner. Der Einsatz

125vgl. Bussler, 2003, S. 21 und Myrach, 2005, S. 8
126vgl. Glöckle, 2007, S. 9 und S. 11 und Karch & Heilig, 2005, S. 212
127vgl. Silberberger, 2003, S. 66f
128vgl. Myrach, 2005, S. 10
von EAI-Tools erhöht des Weiteren die Prozessgeschwindigkeit und erleichtert die Anbindung neuer Anwendungen.129

3.8 Formen der Lieferantenanbindung

Es existiert eine Vielzahl von Möglichkeiten, wie Lieferanten an das beschaffende Unternehmen angebunden werden können. Eine Auswahl der häufigsten Varianten wird in den nachfolgenden Unterkapiteln näher erläutert.

Neben der bereits erwähnten Auswahl und Kategorisierung der Lieferanten (vgl. Kapitel 3.5.3) spielen bei der Anbindung Kriterien wie technische Fähigkeiten der Lieferanten, der Umfang des geplanten Datenaustausches sowie die bevorzugte Integrationstiefe eine Rolle. Es ist jedoch meistens nicht möglich, dass die Herausforderung der Kommunikation mit den Lieferanten durch eine einzige Art der Anbindung realisiert wird.130

Im Zusammenhang mit der Anbindung von Lieferanten an das eigene Unternehmen spielt der Begriff Extranet eine wesentliche Rolle. Während das Internet vorwiegend für die anonyme Öffentlichkeit und das Intranet für Mitarbeiter genutzt wird, bezeichnet der Ausdruck Extranet ein kontrolliertes Internet, welches berechtigten Geschäftspartnern (z.B. Kunden und Lieferanten) Zugang zu Daten und Diensten (z.B. Abfrage des Lagerbestandes bestimmter Artikel, Einsicht in offene Bestellungen) eines Unternehmens ermöglicht.131

3.8.1 EDI

129 vgl. Zanzerl, 2005, S. 76
130 vgl. Appelfeller & Buchholz, 2005, S. 160
131 vgl. Merz, 2002, S. 711ff

133 Modifiziert nach Appelfeller & Buchholz, 2005, S. 154

BGM+220+128576+9‘
DTM+137:20050430:102‘
LIN+1++5000862141404:EN‘
QTY+21:4‘

Abbildung 8: Auszug aus einer Bestellung im EDIFACT-Format138

Die Investitions- und Anpassungskosten für die Anbindung eines Lieferanten über ein EDI-Netzwerk sind sehr hoch und lohnen sich daher nur für eine überschaubare Anzahl großer Lieferanten mit verhältnismäßig vielen Transaktionen, die sich inhaltlich und formal wenig ändern. Ein weiterer Nachteil von EDI sind die relativ hohen Transaktionskosten, welche unter anderem durch die Gebühren des Netzwerkbetreibers entstehen. Bis auf etablierte EDI-Verbindungen in bereits stabilen Geschäftsbeziehungen, welche über den bewährten Standard noch beachtliches Umsatzvolumen abwickeln werden, geht der Trend zu neuen, flexibleren Konzepten des elektronischen Datenaustausches, welche das Internet als Kommunikationsmittel verwenden.136

3.8.2 WebEDI

135 Modifiziert nach Appelfeller & Buchholz, 2005, S. 155
Integration zwischen den Anwendungssystemen gegeben, der Lieferant muss die Daten doppelt in beide Systeme einflegen und profitiert nur von den niedrigen technischen Voraussetzungen der Anbindung. Da das beschaffende Unternehmen weiterhin die existierende Infrastruktur mit EDI als Datenaustauschformat verwenden kann und somit eine ERP-Kopplung besteht, profitiert diese Partei von WebEDI.

Die Anbindung mit WebEDI macht also nur Sinn, wenn einer der beiden Partner so klein ist oder nur sehr wenig mit dem anderen kommuniziert, dass eine direkte Anbindung zu aufwändig und kostspielig wäre. In diesem Fall ist es jedoch notwendig, zusätzliche Auftragserfassungssysteme zu verwenden, da nur wenige Lieferanten die Bereitschaft zeigen würden, bei jeder Anwendung den gesamten Umfang der Daten interaktiv einzupflegen. Dass sich ein Anwender das Dokument, das zwischen zwei Anwendungssystemen übertragen wurde, anschauen möchte, wäre ein zweiter denkbarer Anwendungsfall für WebEDI.\(^{137}\)

3.8.3 XML

\(^{138}\) http://www.w3.org/XML
IT-Unterstützung des Beschaffungsprozesses 43

Derselbe Inhalt, der in Abbildung 8 im EDIFACT-Format dargestellt wurde, kann aus Abbildung 9 im XML-Format entnommen werden. Ein XML-Dokument kann willkürlich viele Elemente enthalten, außerdem können Regeln für die Beschaffenheit der Dokumente in Kombination mit den Elementen festgelegt werden.139

<?xml version="1.0"?>
<Beleg>
 <Bestellung>
 <Bestellnummer>128576</Bestellnummer>
 <Datum>30.04.2005</Datum>
 <Bestellposition>
 <Posnr>10</Posnr>
 <Artikelnr>5000862141404</Artikelnr>
 <Menge>4</Menge>
 </Bestellposition>
 </Bestellung>
</Beleg>

Abbildung 9: Auszug aus einer Bestellung im XML-Format140

140 Modifiziert nach Appelfeller & Buchholz, 2005, S. 156
Auswirkungen und Anpassungen bei der Weiterverarbeitung um zusätzliche Elemente und Attribute erweitert werden.141

Eine Kehrseite von XML ist die Tatsache, dass XML-Dokumente aufgrund des redundanten Aufbaus größer und speicherintensiver sind als vergleichbare, proprietäre Formate (z.B. EDI). Dieser Punkt spielt jedoch nur für Unternehmen eine Rolle, die einige hunderttausend Transaktionen pro Tag durchführen (z.B. DB Cargo) und für die daher die Verarbeitungsgeschwindigkeit wichtiger ist als die bessere Lesbarkeit bzw. die Validierbarkeit. Unternehmen mit einem Maximum von 10.000 Transaktionen pro Tag sind allerdings fähig, die Last durch die XML-Dokumente zu verarbeiten. Diese Unternehmen werden durch die höhere Flexibilität und Standardisierung von XML, die Validierbarkeit der XML-Dokumente sowie durch zusätzliche Möglichkeiten wie zum Beispiel der Einbettung von Bitmaps in Katalogdaten entschädigt.142

Dies soll genügen, um die Charakteristika und Besonderheiten von XML aufzuzeigen. Für weiterführende Informationen zu Struktur und Standard von XML sei auf die entsprechende Fachliteratur verwiesen.143

Frameworks wie RosettaNet147, BizTalk148 oder ebXML149 stellen Initiativen dar, die weit über den einfachen, XML-basierten Datenaustausch hinausgehen. Der Prozessstandard RosettaNet legt zum Beispiel nicht nur das Format der auszutauschenden Nachrichten fest,
er bietet auch die Definition standardisierter Geschäftsprozesse für die unternehmensübergreifende Kommunikation. BizTalk hingegen verwaltet zusätzlich die eingesetzten XML-Nachrichten und veröffentlicht diese.150

Der Stellenwert von XML für den Datenaustausch bzw. in der unternehmensübergreifenden Integration wird in den nächsten Jahren weiter zunehmen. Aufgrund der Vielzahl an verschiedenen offenen und proprietären Standards ist es schwierig, den Überblick zu wahren und vorauszusagen, welche der Standards sich auch in Zukunft halten und etablieren werden.151

Da die detaillierte Ausführung aller Standards den Rahmen dieser Arbeit sprengen würde, sei an dieser Stelle auf die Internetseiten der verschiedenen Standards bzw. auf die entsprechende Fachliteratur verwiesen.152

3.8.4 Supplier Portal

Bei einem Supplier-Portal (oft auch als Supplier Self Service bezeichnet) meldet sich der Lieferant via Internet auf dem Portal des beschaffenden Unternehmens an und kann über dieses System zum Beispiel seine Aufträge bestätigen, Angebote eingeben oder Lagerbestandsdaten des Lieferanten einsehen. Abbildung 10 stellt diese Form der Lieferantenanbindung grafisch dar. Der Lieferant muss bei dieser Option nicht in neue Technologien investieren, er benötigt nur eine Internetverbindung und einen Webbrowser für den Zugriff auf das Supplier-Portal. Während das beschaffende Unternehmen durch eine Kopplung mit seinem ERP-System davon profitiert, dass der Lieferant relevante Daten in sein System einpflegt, besteht der Nachteil für den Lieferanten wie bei WebEDI in der doppelten Pflege – einerseits im Supplier-Portal und andererseits in seinem eigenen System.153 Durch den raschen und kostengünstigen Austausch und der zeitnahen Verfügbarkeit von unternehmenskritischen Unterlagen (z.B. Bestellungen, Rechnungen) profitieren durch diese Transaktionskosteneinsparung jedoch Lieferant und beschaffendes Unternehmen vom Lieferantenportal.154

151 vgl. Nekolar, 2003, S. 124
152 vgl. z.B. Merz, 2002
153 vgl. Appelfeller & Buchholz, 2005, S. 157f
154 vgl. Beckmann, Vlachakis, Kelkar, & Otto, 2002, S. 34
Diese Variante eignet sich daher vor allem für die Anbindung kleiner Lieferanten mit einer geringen Anzahl an Transaktionen, die mithilfe dieser Möglichkeit trotzdem am elektronischen Prozess ihrer Kunden teilnehmen können.

Abbildung 10: Lieferantenanbindung über ein Supplier Portal

3.8.5 Web Services

Web Services sind Softwarekomponenten, die entstanden sind, um heterogene Systeme Plattformunabhängig und herstellerneutral zu integrieren bzw. zu verbinden. Küster definiert Web Services folgendermaßen:

„Web-Services sind unabhängige Softwareobjekte, die eine bestimmte Funktionalität oder einen Geschäftsprozess realisieren. Sie kommunizieren mit Hilfe von standardisierten, XML-basierten Protokollen und nutzen dabei die üblichen Internettechnologien zum Datenaustausch.“

Web Services ermöglichen also entfernte Prozeduraufträge über eine Webinfrastruktur und ein offenes Standardprotokoll. Damit werden die Restriktionen von IT-gestützten Kommunikationsprozessen, die bis dato überhaupt nicht oder nur durch komplexe Verfahren (z.B. EDI) realisiert werden konnten, beseitigt.

Konzepte wie CORBA (Common Object Request Broker Architecture), RMI (Remote Method Invocation) oder DCOM (Distributed Component Object Model) verfolgen ebenso

155 Modifiziert nach Appelfeller & Buchholz, 2005, S. 158
156 vgl. Silberberger, 2003, S. 57
157 Küster, 2003, S. 5
die Zielsetzung der Verbindung von verteilten Anwendungen. Bis dato konnte sich jedoch bei diesen Middleware-Konzepten noch kein alleiniger Standard etablieren.159

Web Services bauen sowohl auf die Nutzung von etablierten Standards wie TCP/IP (Transmission Control Protocol/Internet Protocol) oder XML als auch auf neue Standards wie SOAP (Simple Object Access Protocol), WSDL (Web Services Description Language) und UDDI (Universal Description, Discovery and Integration) auf.160 Die einzelnen Funktionen der Basisprotokolle von Web Services können aus Tabelle 5 entnommen werden.

<table>
<thead>
<tr>
<th>Protokoll</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDL</td>
<td>Ein allgemeines Rahmenwerk zur Beschreibung der Aufgaben, die ein Web Service erledigt. Lieferanten können z.B. herausfinden, welche Informationen sie vom Lagerhaltungssystem ihres Kunden erhalten (z.B. nur die Erreichung eines Schwellenwertes oder auch Fälligkeitstermine).</td>
</tr>
</tbody>
</table>

161Tabelle 5: Funktionen der Basisprotokolle für Web Services161

Für die Anbindung der Lieferanten an das beschaffende Unternehmen über Web Services spricht vor allem die Interoperabilität dieses Konzeptes, das heißt verschiedenartige Anwendungssysteme von diversen Anbietern, eventuell auch in unterschiedlichen Programmiersprachen, die auf andersartigen Plattformen laufen, können unternehmensintern und -übergreifend miteinander kommunizieren.162

159 vgl. Badach, Rieger, & Schmauch, 2003, S. 311
160 vgl. Silberberger, 2003, S. 61
161 Eigene Darstellung, Daten entnommen aus Ismail, Patil, & Saigal, 2002
162 vgl. Küster, 2003, S. 6

![Abbildung 11: Lieferantenanbindung über Web Services\footnote{Modifiziert nach Appelfeller & Buchholz, 2005, S. 159}]

Ein weiterer Vorteil durch die Integration mit Web Services ist die Senkung der IT-Integrationskosten, da der Bedarf an herstellerspezifischen Adaptern durch die offenen und standardisierten Schnittstellen gesenkt wird. Weiters führen ein verbesserter Investitionsschutz im IT-Bereich sowie größere Synergieeffekte durch die neue Art der Zusammenarbeit der schon vorhandenen Anwendungen zu Vorteilen im Unternehmen. Ein Risiko im Zusammenhang mit der Nutzung von Web Services liegt in der noch relativ jungen und daher noch nicht ganz ausgereiften Technologie sowie in noch offenen Sicherheitsfragen bei der Abwicklung komplexer Transaktionen.\footnote{vgl. Silberberger, 2003, S. 57ff}

3.8.6 Weitere Formen der Anbindung

Trotz der bereits diskutierten Anbindungsformen wie EDI oder XML werden Medien wie Telefon, Post bzw. Fax und E-Mail weiterhin eine zentrale Bedeutung in der
Kommunikation von Unternehmen mit ihren Lieferanten einnehmen. Besonders in Ausnahmefällen, die nicht automatisiert abgewickelt werden können, oder zur Abklärung zusätzlicher Details wird auch der Einkäufer der Zukunft noch zum Telefonhörer greifen bzw. eine E-Mail an den zuständigen Lieferanten schicken. Besonders das Medium E-Mail wird in naher Zukunft das Faxgerät sowie den herkömmlichen Postweg weitgehend ersetzen.\(^{166}\)

Diese Medien können jedoch nicht direkt mit den vorher genannten verglichen werden, da E-Mail und Telefon parallel zur gewählten Form der Lieferantenanbindung existieren und damit keine direkte Anbindung bzw. Integration des Lieferanten ermöglicht wird.

3.9 Verbreitung von E-Procurement

\(^{166}\) vgl. Appelfeller & Buchholz, 2005, S. 160
\(^{167}\) vgl. ZEW, 2007, S. 1

Zusammenfassend kann gesagt werden, dass neunzig Prozent aller befragten Unternehmen bereits einzelne Instrumente von E-Procurement nutzen oder die Nutzung geplant haben, das volle Potenzial ist jedoch noch keineswegs ausgeschöpft. Aufgrund des kleinen Stichprobenumfangs bei der Untersuchung stellt die Studie eher einen Stimmungsbarometer für die elektronische Beschaffung dar, die genauen Prozentsätze sind daher nur als ungefähre Richtwerte zu sehen.

E-Procurement ist in Österreich vor allem im Anlagenbau, im Stahlsektor, in der Elektro- und Elektronikindustrie sowie im Automotivbereich verbreitet. Weiters ist Österreich ein Pionier in Europa hinsichtlich der öffentlichen Beschaffung, da die Beschaffungsgesellschaft des österreichischen Bundes bereits E-Procurement-Lösungen einsetzt.169

\section*{3.10 Anforderungen an die Sicherheit}

Der Hauptgrund bei Umfragen, warum E-Commerce bzw. E-Business trotz der großen Erwartungen nur mäßig genutzt werden, ist das mangelnde Vertrauen an die Sicherheit.170 Gerade die vernetzte Informations- und Kommunikationstechnik stellt spezielle Anforderungen an die Sicherheit, im Besonderen an die Sicherheit der Übertragung im Internet.171 Um Angriffe auf IT-Systeme von außen zu entdecken und abzuwehren, sind angemessene technische und organisatorische Maßnahmen nötig. Diese dürften jedoch –

168 vgl. BME, 2008, S. 1ff
169 vgl. Pechek, 2006, S. 19
170 vgl. Raepple, 2002, S. 68
171 vgl. Krcmar, 2003, S. 225
speziell bei E-Business-Anwendungen - nicht die unternehmensübergreifende Zusammenarbeit und den Datenaustausch behindern.172

Es ist jedoch nicht möglich, ein allgemeines Sicherheitskonzept für jede erdenkliche Art betriebsübergreifender Vernetzung über das Internet zu entwickeln. Zu verschieden sind die Anforderungen spezieller Branchen sowie die Funktionalitäten der verschiedenen Werkzeuge.173 Aus diesem Grund werden in diesem Kapitel nur prinzipielle Gesichtspunkte und deren mögliche Umsetzung angeführt.

Relevante Sicherheitsziele, die für den elektronischen Geschäftsverkehr via Internet zur Gewährleistung der Transaktionssicherheit sichergestellt werden sollen, können aus Tabelle 6 entnommen werden.

<table>
<thead>
<tr>
<th>Sicherheitsziele</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertraulichkeit</td>
<td>Informationen nicht an unbefugte Empfänger</td>
</tr>
<tr>
<td>Authentizität</td>
<td>Echtheit von Identität/Herkunft des Kommunikationspartners</td>
</tr>
<tr>
<td>Verbindlichkeit</td>
<td>Beweisbarkeit der Kommunikation für Absender und Empfänger</td>
</tr>
<tr>
<td>Unveränderbarkeit/Integrität</td>
<td>Keine Verfälschung der übertragenen Daten</td>
</tr>
<tr>
<td>Verfügbarkeit</td>
<td>Schutz vor Ausfall der IT-Systeme</td>
</tr>
</tbody>
</table>

\textbf{Tabelle 6: Sicherheitsziele}174

172 vgl. Abts & Mülder, 2004, S. 381
173 vgl. Raepple, 2002, S. 64
machen zusätzliche technische Sicherheitsmaßnahmen wie das Protokoll IPSEC (Internet Protocol Security) oder Sicherheitsdienste speziell für XML (XML Security) Sinn.175

Für Details zu den angeführten Protokollen und Sicherheitskonzepten sei auf die entsprechende Fachliteratur im Bereich IT-Sicherheit verwiesen.176

In gewissen Bereichen (z.B. bei der Beschaffung von C-Gütern) übersteigen die Kosten für die Gewährleistung der Sicherheit den Wert des eingekauften Gutes. Dieses Problem kann nur dadurch aus der Welt geschafft werden, in dem das beschaffende Unternehmen seinem Lieferanten Vertrauen entgegenbringt. Falls aufgrund unregelmäßiger Beschaffung kein Vertrauensverhältnis aufgebaut werden kann, gibt es Vertrauenssiegel wie e-comtrust177 oder TRUSTe178. Erfahrungen mit den entsprechenden Lieferanten werden an einer Stelle zentral gesammelt, der Einkäufer kann dem Lieferanten vertrauen, obwohl er noch keine Transaktion mit ihm durchgeführt hat, was wiederum Einsparungen in den Transaktionskosten für das beschaffende Unternehmen mit sich bringt.179

3.11 Rechtliche Anforderungen

Nach Dörflein sind die rechtlichen Vorschriften bei der Einführung einer E-Procurement-Lösung heikler als die Anforderungen an die Sicherheit eines solchen Systems.180

Grund dafür sind die Probleme, die bei Missachtung der Rechtslage im elektronischen Geschäftsverkehr auftreten können. Verträge kommen nicht zustande oder werden unter falschen Voraussetzungen oder irrtümlich abgeschlossen, einer der Geschäftspartner tritt vom Vertrag zurück, gewisse Ansprüche lassen sich nicht beweisen, etc.181 Aufgrund der Tatsache, dass das Internet an sich nicht für die sichere Abwicklung solcher Transaktionen entwickelt wurde, können sich daraus Schwierigkeiten in der Anbahnungs-, Vereinbarungs- und Abwicklungsphase eines Geschäft ergeben.182

In Österreich sind die speziellen rechtlichen Rahmenbedingungen des elektronischen Geschäftsverkehrs im E-Commerce-Gesetz (vgl. Zankl183) geregelt, mit welchem im Jahr

\begin{footnotesize}
\begin{itemize}
\item 175 vgl. Stoll, 2007, S. 58 und Raepple, 2002, S. 70ff und Großmann & Koschek, 2005, S. 133f
\item 176 vgl. z.B. Eckert, 2007
\item 177 http://www.e-comtrust.org
\item 178 http://www.truste.org
\item 179 vgl. Stoll, 2007, S. 63f
\item 180 vgl. Dörflein, 2005, S. 117
\item 181 vgl. Schaeuffelen, 1999, S. 172 und Fässler, 2002, S. 190f
\item 182 vgl. Stoll, 2007, S. 47
\item 183 vgl. Zankl, 2002
\end{itemize}
\end{footnotesize}

3.12 Gefahren und Risiken bei der Einführung

In der bereits angeführten Studie des BME zur elektronischen Beschaffung\footnote{vgl. BME, 2008, S. 7f und vgl. Kapitel 3.9} wurden die Unternehmen weiters befragt, ob es Gründe in ihrem Unternehmen gibt, welche den Einsatz von E-Procurement behindern. Nur 38 Prozent der befragten Unternehmen sehen keinen Hinderungsgrund für den Einsatz von E-Procurement-Tools. 35 Prozent der Firmen werden durch innerbetriebliche Widerstände behindert, bei immerhin einem Fünftel spielen Kostengründe eine wesentliche Rolle. Bei weiteren 22 Prozent hindern die fehlende
Motivation bzw. das fehlende Erkennen von Chancen (z.B. durch die Geschäftsführung) die Einführung, bei der vorletzten Studie 2006 war dieser Grund noch für fast die Hälfte (42 Prozent) relevant. Weitere Gründe wie fehlende E-Readiness, mangelnde Qualität bzw. Verbreitung von Standards oder die Angst vor dem Verlust altbewährter Geschäftspartner spielen nur für einen Bruchteil der Unternehmen eine Rolle.

Nach Neef scheitern Unternehmen bei der Einführung von E-Procurement-Systemen hauptsächlich daran, dass folgende Randthemen (insbesondere bei der Beschaffung von direkten Materialien) nicht oder nur unzureichend bewältigt werden:

- **interne sowie betriebsübergreifende Integration der Systeme:**
 mangelnde Technikgewandtheit der Lieferanten, fehlende Kompatibilität der Systeme im beschaffenden Unternehmen, parallele Auftragsbearbeitung als Sicherheit oder Backup über Telefon oder Fax

- **Investitionskosten bei der Einführung:**
 Unterschätzung zusätzlicher Kosten für Katalogentwicklung, Schulung, Integration, Lizenzen, Wartung, Verhandlungen mit den Lieferanten sowie Honorare der Consultants

- **Sicherheit, Vertrauen sowie Kunden-Lieferanten-Beziehungen:**
 mangelnde Nutzung der verfügbaren Sicherheitssysteme

- **fundamentale Änderungen an den Beschaffungsprozessen und in der Unternehmenskultur.**

Die häufigsten Schwierigkeiten in E-Procurement-Projekten sind schlechte Zeitpläne, wechselnde Zuständigkeiten sowie ungenügende Dokumentationen und fehlendes Wissensmanagement. Des Weiteren hindern Faktoren wie ein undefinierter

189 vgl. Neef, 2001, S. 130ff
Einführungsumfang oder das Fehlen eines einheitlichen und strukturierten Vorgehens die Erzielung eines zufriedenstellenden ROIs durch ein zügig abgewickeltes und erfolgreiches Projekt.191

Zusammenfassend kann gesagt werden, dass E-Procurement-Vorhaben in erster Linie Projekte zur Reorganisation der Prozesse sind und nur beim zweiten Hinsehen IT-Projekte, obwohl die IT solche Vorhaben oftmals anregt und als sogenannter „Enabler“ bzw. „Implementer“ dient.192 Aus diesem Grund liegen die Risiken für das Scheitern solcher Projekte hauptsächlich in der Akzeptanz und Motivation der betroffenen Mitarbeiter sowie der einbezogenen Lieferanten. Da es jedoch ohne die nötige technische Unterstützung durch das E-Procurement-System kein Projekt geben würde, dürfen die Gefahren im Bereich Integration und die Kosten der Lösung nicht unterschätzt werden.

191vgl. Nissen & Mauß, 2002, S. 58
4 Wirtschaftlichkeit

Dieser Abschnitt beschäftigt sich mit der Wirtschaftlichkeitsbetrachtung von Systemen zur IT-Unterstützung der Beschaffungsprozesse. Dazu ist es nötig, zuerst den Begriff Wirtschaftlichkeit zu definieren und Methoden zur Beurteilung der Wirtschaftlichkeit von IT-Projekten auf die Eignung zur Anwendung für eine solche Lösung zu untersuchen. Im nächsten Schritt werden die geeigneten Methoden auf die Besonderheiten von E-Procurement abgestimmt und zusammen mit den in Kapitel 3 erarbeiteten Aspekten zu einer methodischen Vorgehensweise zur Entscheidungsfindung kombiniert.

4.1 Begriffsdefinitionen

In der Literatur werden vor allem die Begriffe Effizienz und Wirtschaftlichkeit häufig synonym verwendet, Stahlknecht & Hasenkamp sowie Krems bezeichnen als Wirtschaftlichkeit das Verhältnis zwischen Kosten und Nutzen.\(^{194}\) Nach Kellermann entspricht der Begriff Effizienz weitestgehend dem Begriff Wirtschaftlichkeit.\(^{195}\)

In dieser Arbeit wird bei der Analyse der um den Nutzenaspekt erweiterte Wirtschaftlichkeitsbegriff verwendet, da ein fundierter Vergleich von verschiedenen Systemen zur Unterstützung bei der Entscheidungsfindung erst dadurch ermöglicht wird.\(^{196}\)

Die wirtschaftlichste Maßnahme ist jene Alternative, bei welcher der Quotient aus Nutzen und Kosten am höchsten ist.\(^{197}\) Bei nur einer Option ist diese wirtschaftlich, wenn das Verhältnis aus Nutzen und Kosten größer als eins ist, das heißt der gesamte Nutzen aus der Maßnahme die entstandenen Gesamtkosten über die Nutzungsdauer übersteigt.

\(^{193}\) vgl. Eichhorn, 2005, S. 162f
\(^{195}\) vgl. Kellermann, 2005, S. 103
\(^{196}\) vgl. Stahlknecht & Hasenkamp, 2005, S. 251
\(^{197}\) vgl. Krems, 2008

4.2 Verfahren zur Beurteilung der Wirtschaftlichkeit von IT-Projekten

Bei der Betrachtung der Wirtschaftlichkeit ist ferner zu beachten, dass der Kapitalrückfluss in einem Unternehmen nicht durch die IT, sondern durch den resultierenden Nutzen in den Geschäftsprozessen herbeigeführt wird.\footnote{vgl. von Thienen, 2006}

Um in einem Unternehmen langfristig einen Mehrwert zu bewirken, soll bestmöglich nur in jene Projekte investiert werden, welche die Renditeerwartung der Kapitalgeber (Kapitalkostensatz) erfüllen bzw. übersteigen und somit eine dem Risiko angemessene Verzinsung bieten.\footnote{vgl. Brugger, 2005, S. 99} Wenn die Kosten jedoch höher als der Nutzen sind, gilt es zu entscheiden, ob es andere strategische Gründe für die Investition gibt, welche eine Durchführung des Projektes trotz der schlechten prognostizierten Rendite erfordern.\footnote{vgl. Remenyi, 1999, S. 146}

4.2.1 Der IT Business Case

Um eine Entscheidung für oder gegen eine IT-Investition auszusprechen, genügt es meistens nicht, nur die Kosten dem potenziellen Nutzen in Form einer Wirtschaftlichkeitsanalyse gegenüber zu stellen. Um die Unterstützung des Managements für eine solche Investition zu erhalten, ist es nötig, einen größeren Überblick über das
geplante Vorhaben in Form eines IT Business Case zu bekommen.203 Keen & Digrius definieren den Begriff IT Business Case als Dokument, welches für Entscheidungsträger entwickelt wird und neben dem momentanen und zukünftigen Geschäftswert die verbundenen Risiken einer IT-Investitionsmöglichkeit enthält.204

Abbildung 12 zeigt die Elemente, welche ein IT Business Case enthalten soll. Diese fünf Bereiche sollen sowohl einzeln als auch als Ganzes betrachtet werden. Die Analyse der Wirtschaftlichkeit bildet dabei nur eine Teilmenge des Business Case. Der Teilbereich Stakeholder206 beschäftigt sich mit Fragestellungen, wer Sponsor, Projektleiter bzw. ein Gegner der geplanten Investition ist bzw. ob alle betroffenen Personen miteinbezogen wurden, um das Projekt zum Erfolg zu führen. Im Hinblick auf die Technologie der Investition ist zu prüfen, ob diese greifbar ist bzw. ob das Unternehmen organisatorisch in der Lage ist, die geplante Technologie umzusetzen. Training und Schulung der betroffenen Mitarbeiter spielen ebenso in diesen Punkt hinein. Die strategische Ausrichtung des Projektes stellt sicher, dass die beabsichtigte Investition die Unternehmensstrategie direkt unterstützt. Sollte das nicht der Fall sein, wird in diesem Punkt beleuchtet, in welcher Hinsicht das Projekt gegen die Strategie arbeitet bzw. kontraproduktiv ist. Vor der Umsetzung eines IT-Projektes ist es nötig, sich der Projekt- und Systemrisiken bewusst zu werden und zu überlegen, was unternommen werden kann, um die identifizierten Risiken

203 vgl. Remenyi, 1999, S. 4
204 vgl. Keen & Digrius, 2003, S. 4
205 Modifiziert nach Remenyi, 1999, S. 16
206 Jede Gruppe oder Einzelperson, welche auf das Erreichen der Organisationsziele Einfluss nehmen kann oder selbst davon betroffen ist (vgl. Freeman, 1984, S. 46)
zu handhaben bzw. zu minimieren. Wenn die Antwort auf nur eine der Fragestellungen nicht zufriedenstellend ist, muss das ganze Projekt in Frage gestellt werden.207

Ein IT Business Case stellt jedoch nicht den ersten Schritt bei der Einführung eines neuen Informationssystems dar. Vor der Umsetzung sind zahlreiche Arbeitsschritte mit Stakeholdern und Prozessanalysten (z.B. Prozessmodellierung, detaillierte Diskussionen) nötig. Zusammenfassend kann gesagt werden, dass ein korrekt umgesetzter IT Business Case die Basis bzw. den Grundpfeiler zur Messung und Lenkung erfolgreicherer IT-Entwicklung darstellt.208

4.2.2 Kosten-Nutzen-Analyse

Wie aus Abbildung 13 ersichtlich, werden bei der Wirtschaftlichkeitsanalyse eines Systems (auch Kosten-Nutzen-Analyse genannt) die Kosten dem Nutzen gegenübergestellt.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image}
\caption{Abbildung 13: Elemente der Wirtschaftlichkeitsanalyse209}
\end{figure}

Verschiedene Methoden zur Vorgehensweise bei der Bewertung von Kosten und Nutzen sowie die Problematik bei der Wirtschaftlichkeitsanalyse von IT-Systemen werden in den nachfolgenden Kapiteln erläutert.

4.2.2.1 Kostenanalyse

207 vgl. Remenyi, 1999, S. 2 und S. 146f
208 vgl. Remenyi, 1999, S. 5 und S. 8 und S. 16
209 Modifiziert nach Abts & Mülder, 2004, S. 342
Wirtschaftlichkeit

... des Systems, dazu zählen weiters Folgekosten für Wartung, Betreuung sowie laufende Anpassungen und Erweiterungen.210

Damit bei der Kostenanalyse alle anfallenden Kosten für die Investition berücksichtigt werden, ist es erforderlich, die \textbf{Total Cost of Ownership (TCO)} im Auge zu behalten. Der Begriff TCO wurde 1987 von der Gartner Group211 entwickelt und ermöglicht dem Unternehmen eine gesamtkostenbezogene Sichtweise auf die Investition über die gesamte Nutzungsdauer. Die Betrachtung von direkten (z.B. Hard- und Softwarekosten) und indirekten Kosten (z.B. Training, Kosten für Geschäftsentgang) sowie die Einbeziehung bereichs- und betriebsübergreifender Aspekte ermöglichen ein umfassendes Verständnis für die Gesamtkosten des IT-Systems und identifizieren bereits im vorhinein geläufige Kostentreiber sowie versteckte Belastungen.212

Bei der Analyse der Kosten darf speziell bei IT-Systemen nicht auf die Analyse der \textbf{Transaktionskosten} vergessen werden. Darunter werden jene Kosten verstanden, die in Zusammenhang mit einer Transaktion bzw. einem Tausch entstehen. Betroffen sind dabei unter anderem die Kosten für den Abschluss und die Durchführung des Geschäfts sowie für die Recherche eines geeigneten Tauschpartners. Am Beispiel des Beschaffungsprozesses können Transaktionskosten zum Beispiel bei der Einholung von Angeboten, bei Vertragsverhandlungen oder für Girokonto-Transaktionen entstehen. Bei IT-Systemen, die speziell zur Unterstützung der Kommunikation eingeführt werden (z.B. E-Procurement-Systeme), ergibt sich ein Nutzeneffekt aus der Senkung dieser Transaktionskosten.213

Speziell bei den Transaktionskosten muss bei der Wirtschaftlichkeitsanalyse darauf geachtet werden, dass diese nicht doppelt sowohl als Kosten- als auch als Nutzenfaktoren angeführt werden und somit das Ergebnis verfälschen.

\textbf{4.2.2.2 Nutzenanalyse}

Der Nutzen von IT-Systemen ist im Vergleich zu den Kosten viel schwieriger einzuschätzen. Da jedoch mit Kosten alleine nicht argumentiert werden kann, ist eine Nutzenbewertung unumgänglich. Grund für die schwierige Ermittlung des Nutzens ist die Tatsache, dass viele Nutzenaspekte qualitative oder weiche Faktoren darstellen, die schwer...

Für die Wertbetrachtung in Form der Kapitalverzinsung werden im Projektgeschäft häufig statische bzw. dynamische Verfahren der Investitionsrechnung herangezogen. Während statische Methoden (z.B. Kostenvergleichs- oder Amortisationsrechnung) nur mit Daten einer Periode rechnen, beziehen dynamische Verfahren (z.B. Kapitalwertmethode, Annuitätlichenmethode) den zeitlichen Ablauf der Ein- und Auszahlungsströme ein.216 Die betriebswirtschaftliche Investitionsrechnung ist ein eindimensionales Bewertungsverfahren und eignet sich daher nur eingeschränkt für die Nutzenbewertung von IT-Systemen, da sich die Berechnung auf monetäre Kriterien beschränkt und qualitative Faktoren außer Acht gelassen werden.217

Mehrdimensionale Verfahren wie das Scoring-Verfahren oder die Nutzwertanalyse, die in Kapitel 4.2.2.3 diskutiert wird, beziehen zwar qualitative Kriterien mit ein, eignen sich jedoch nur für den Vergleich mehrerer Alternativen und nicht für die Wirtschaftlichkeitsbeurteilung eines konkreten Systems.218

216 vgl. Brandt, 2002, S. 66ff
217 vgl. Stahlknecht & Hasenkamp, 2005, S. 251
218 vgl. Wieczorrek & Mertens, 2007, S. 234
Aus diesem Grund entwickelten sich in der Literatur kombinierte Verfahren wie die erweiterte Wirtschaftlichkeitsrechnung oder die Verknüpfung von Kosten-Nutzen-Analyse und Szenariotechnik, die eine Gesamtbearbeitung für ein IT-System ermöglichen.219 Details zu den angeführten Methoden der Nutzenbewertung können der entsprechenden Fachliteratur entnommen werden.220

Das Effizienzkonzept von Frese, welches die Nutzenkriterien aus den Zielen der Unternehmung herleitet, ist eine weitere Möglichkeit zur ganzheitlichen Betrachtung des Nutzens, welches Martin, Mauterer & Gemünden zum Beispiel zur Ermittlung des Nutzens von ERP-Systemen bzw. Steiner & Lang zur Betrachtung einer E-Procurement-Lösung bei IBM heranziehen. Kriterien sind dabei die \textbf{Prozesseffizienz} (Fähigkeit zur Verbesserung der Geschäftsprozesse hinsichtlich Zeit, Kosten und Qualität), die \textbf{Markteffizienz} (Wahrnehmung von Möglichkeiten auf Beschaffungs- und Absatzmärkten), die \textbf{Ressourceneffizienz} (Produktivität bzw. Wirtschaftlichkeit) sowie die \textbf{Motivationseffizienz} (Akzeptanz auf Mitarbeiterebene). Die Tatsache, dass zwischen den angeführten Kriterien Zielkonflikte bestehen, das heißt die Erreichung eines hohen Maßes an Markt- oder Ressourceneffizienz im Allgemeinen die Prozesseffizienz beeinträchtigt, erschwert jedoch die Nutzenbetrachtung.221

\subsection*{4.2.2.3 Nutzwertanalyse}

Die Nutzwertanalyse (NWA) stellt eine Methode zur Unterstützung der Entscheidungsfindung dar, welche den Nutzwert verschiedener, sich ausschließender Entscheidungsalternativen gegenüberstellt. Die NWA ist vor allem dann geeignet, wenn nicht-monetäre Kriterien, wie zum Beispiel die geschätzte Projektdauer oder die Erfahrung der Berater, vorliegen. Das Grundschema für die Vorgehensweise bei der NWA ist aus Abbildung 14 ersichtlich. Im ersten Schritt werden die Handlungsalternativen festgelegt, am Beispiel der Softwareauswahl wären dies die verschiedenen Lösungen der Anbieter. Danach werden idealerweise drei bis fünf (maximal zehn) prägnante Bewertungskriterien ermittelt, die dem Unternehmen schlussendlich zur Entscheidung verhelfen sollen (siehe auch Kapitel 3.5.5). Im dritten Schritt gilt es, Gewichtungsfaktoren für die einzelnen Kriterien zu ermitteln, deren Summe den Wert eins ergibt. Dieser Vorgang kann nach

219 vgl. Brandt, 2002, S. 80
220 vgl. z.B. Brandt, 2002

![Abbildung 14: Vorgehensweise bei der Nutzwertanalyse223](attachment:diagram.png)

Wer die NWA zur Entscheidungsfindung heranzieht, sollte sich jedoch der Schwächen und Grenzen der Methode bewusst sein. Der größte Kritikpunkt an der NWA ist die Tatsache, dass Auswahl und Gewichtung der Kriterien sowie Skala und Bewertung der Alternativen subjektiv festgelegt werden. Weiters können zwar die Teilnutzwerte sinnvoll interpretiert werden, der aufsummierte Gesamtnutzen, der verschiedenste Kriterien abdeckt, ist ökonomisch jedoch nicht mehr folgerichtig zu deuten. Außerdem existieren oftmals Abhängigkeiten zwischen verschiedenen Kriterien, welche die Aussagekraft des Nutzwertes wiederum schmälern. Das Instrument soll hauptsächlich dazu dienen, dass die Entscheidungskriterien genau geprüft und diskutiert werden und dadurch neue Erkenntnisse und Klarheit im Entscheidungsprozess geschaffen werden. Der höchste Nutzwert am Ende dient zwar der Orientierung und ermöglicht eine Vergleichbarkeit der Alternativen, soll aber nicht ohne weitere Prüfung und Diskussion akzeptiert werden.224

4.2.2.4 Kritik an der Wirtschaftlichkeitsanalyse

Zusätzlich zu den bereits in Kapitel 4.2.2.2 angeführten Schwierigkeiten bei der Bewertung des Nutzens von IT-Systemen kann mit Hilfe der Wirtschaftlichkeitsanalyse jedes

222 vgl. Günther & Tempelmeier, 2005, S. 71 und Niklas, 2004
223 Eigene Darstellung
Vorhaben schön oder schlecht gerechnet werden. Abhängig davon, ob die aufgestellten Annahmen optimistisch oder pessimistisch formuliert werden, fällt das Resultat aus der Betrachtung der Wirtschaftlichkeit gut oder schlecht aus.\footnote{vgl. Appelfeller & Buchholz, 2005, S. 248}

Ähnlich wie bei der NWA (vgl. Kapitel 4.2.2.3) erfordert der angeführte Bewertungsspielraum bereit während der Analysephase eine genaue Prüfung und Diskussion der einzelnen Kosten- und Nutzenaspekte. Die gewonnene Diskussionstransparenz soll Klarheit über die tatsächliche Bedeutung der einzelnen Aspekte schaffen und somit zu einem an das Unternehmen angepassten Ergebnis führen.

4.2.3 Return on Investment (ROI)

Um eine reale Betrachtung des ROI umzusetzen, muss zwischen Potenzialen und Maßnahmen, die sich auf die Gewinn- und Verlustrechnung (GuV) auswirken, differenziert werden. Unter dem Begriff Potenzial werden alle theoretischen Einsparungen verstanden, welche eine Kapazitätsumverteilung bewirken. Da diese jedoch nicht zwangsläufig zu einer Personalfreisetzung führen und daher oftmals keinen Beitrag zum Unternehmensergebnis leisten, dürfen sie auch nicht in die ROI-Berechnung einfließen. Bewirkt eine Maßnahme jedoch eine Veränderung im Unternehmensergebnis, wie zum Beispiel Kosten für Hardware oder Schulungen oder der Abbau von Überstunden, muss sie dem ROI zugerechnet werden.\footnote{vgl. Peukert & Ghazvinian, 2001, S. 216}
In der Praxis ist es des Weiteren üblich, den Zeitraum in Jahren zu ermitteln, innerhalb dessen das investierte Kapital ins Unternehmen zurückfließt (z.B. ROI in drei Jahren). Diese statische Methode der Investitionsrechnung, die als **Payback-**, **Amortisations-** oder **Kapitalrückflussrechnung** bezeichnet wird, berechnet die Zeitspanne, bis sich eine Investition durch die Einnahmenüberschüsse bzw. die liquiditätswirksamen Kosteneinsparungen amortisiert. Tabelle 7 zeigt eine mögliche Vorgehensweise bei der Ermittlung des ROI. Die Investition amortisiert sich in dem Jahr, in dem der kumulierte Netto-Cashflow das erste Mal positiv ist. Um das Ergebnis dieser Methode zu verfeinern, kann das zeitliche Auftreten der Zahlungsströme in einer dynamischen Payback-Rechnung durch Abzinsung in die Berechnung mit einbezogen werden.\(^{229}\)

<table>
<thead>
<tr>
<th>ROI-Betrachtung</th>
<th>Jahr 1</th>
<th>Jahr 2</th>
<th>Jahr 3</th>
<th>Jahr x</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Einführungskosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Laufende Kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Kosteneinsparungen bzw. Nutzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Jährliche Nettoeinsparungen (3-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Kumulierte Nettoeinsparungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Jährlicher Netto-Cashflow (3-(1+2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Kumulierter Netto-Cashflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7: Ermittlung des ROI und der Amortisationsdauer\(^{230}\)

Nach Kaplan & Norton macht es jedoch keinen Sinn, für strategische IT-Investitionen (und generell für immaterielle Vermögensgegenstände wie Wissen oder Technologie) einen ROI zu errechnen. IT-Systeme können und sollen nicht unabhängig von anderen Investitionen und Initiativen betrachtet werden. Der Wert einer strategischen IT-Maßnahme ergibt sich daraus, wie gut das System sich nach der Strategie der Unternehmung ausrichtet und nicht wie viel es im Verhältnis zu seinem isoliert betrachteten Nutzen kostet.\(^{231}\)

Trotz der angeführten Kritikpunkte am ROI eignet sich die Kennzahl als Entscheidungshilfe und Diskussionsgrundlage vor der Einführung von IT-Systemen, am Besten in Kombination mit anderen Beurteilungsmethoden sowie mit dem Bewusstsein der angeführten Problematik.

\(^{229}\) vgl. Brugger, 2005, S. 141f
\(^{230}\) Modifiziert nach Abts & Mülder, 2004, S. 347
4.3 Wirtschaftlichkeit IT-gestützter Beschaffungslösungen

Während sich das vorhergehende Kapitel mit Methoden zur Beurteilung der Wirtschaftlichkeit von IT-Projekten beschäftigt, befasst sich dieses Kapitel mit Konzepten, welche speziell auf IT-gestützte Beschaffungslösungen abgestimmt wurden.

4.3.1 Voraussetzungen

Um die Wirtschaftlichkeit einer Lösung zur IT-Unterstützung des Beschaffungsprozesses ermitteln zu können, ist es notwendig im Vorfeld eine idealtypische Ausgangssituation festzulegen, das heißt Voraussetzungen für die Einführung einer solchen Lösung zu definieren. Die in Abbildung 15 angeführten Erfolgsfaktoren sind Prämisse, deren Umsetzung zur Bewertung der Wirtschaftlichkeit vorausgesetzt wird und welche bei Nichterfüllung die Einführung einer elektronischen Beschaffungslösung gefährden können.

Grundvoraussetzungen für die Einführung einer E-Procurement-Lösung sind die Optimierung der unternehmensinternen und –übergreifenden Prozesse sowie eine Anpassung derselben an die Unternehmensstrategie, welche mit Hilfe der IT-Lösung umgesetzt werden soll. Durch ein E-Procurement-System verschmilzt der Vertrieb des Lieferanten mit dem Einkauf des beschaffenden Unternehmens. Aus diesem Grund müssen die Lieferanten in den Optimierungsprozess eingebunden sowie die Beziehung zu den

Abbildung 15: Voraussetzungen für die Wirtschaftlichkeitsbetrachtung IT-gestützer Beschaffung

232 Eigene Darstellung

233 vgl. Dörflein, 2005, S. 133
235 vgl. z.B. Tiemeyer, 2007
239 vgl. Stoll, 2007, S. 67
Nach Kollmann stellt das Projektteam für die Einführung einen tendenziell unkritischen Erfolgsfaktor dar. Ein kompetentes Projektmanagement ist jedoch besonders in der Roll-Out-Phase des Projektes eine Grundvoraussetzung für eine erfolgreiche Durchführung. Zu den kritischen Faktoren im Projekt zählen des Weiteren die Definition der Anforderungen und des Funktionsumfangs an die Lösung sowie die Festlegung von Warengruppen und Lieferanten, welche für das E-Procurement-System des Unternehmens von Bedeutung sind (vgl. Kapitel 3.5.2 und 3.5.3).

Zusammenfassend kann gesagt werden, dass die Anpassung der Prozesse, eine aktive Miteinbeziehung von Mitarbeitern und Top-Management, ein professionelles Projektmanagement sowie die detaillierte Definition der Anforderungen sowie des Funktionsumfangs an die geplante Lösung die wesentlichen Voraussetzungen für die Einführung und Wirtschaftlichkeitsbetrachtung IT-gestützter Beschaffung darstellen. Werden diese Grundvoraussetzungen nicht erfüllt, ist es nicht sinnvoll, eine Analyse der Wirtschaftlichkeit anzustellen, da jeder dieser Punkte bei Nichterfüllung das Projekt zum Scheitern bringen kann.

4.3.2 Kosten- und Nutzenaspekte

Um eine Wirtschaftlichkeitsanalyse für ein System zur elektronischen Beschaffung durchzuführen, müssen Kosten und Nutzen - zugeschnitten auf die Einführung IT-gestützter Beschaffung - ermittelt werden. Als Hilfestellung stellt Tabelle 8 eine Übersicht über mögliche Kosten- und Nutzenaspekte speziell für E-Procurement-Lösungen dar, welche mit Hilfe der in Kapitel 4.2.2 dargestellten Konzepte zur Bewertung von Kosten und Nutzen erarbeitet wurden.

Sowohl bei den laufenden Kosten als auch bei den Nutzenpotenzialen ist es üblich, jeweils die relative Veränderung zum Ist-Zustand für die Wirtschaftlichkeitsanalyse heranziehen. Wie bereits in Kapitel 4.2.2.2 erläutert, ist vor allem der Nutzen eines IT-Projektes schwer zu bewerten. Nach Kellermann ist die Unklarheit über den Nutzen einer E-Procurement-Lösung bei KMUs sogar der Hauptgrund für den Verzicht auf die Einführung.

243 vgl. Döbler, 2003, S. 5f
244 vgl. Brugger, 2005, S. 74 und S. 84
245 vgl. Kellermann, 2005, S. 84
<table>
<thead>
<tr>
<th>Kosten</th>
<th>Nutzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>einmalige Kosten (Investitionskosten)</td>
<td></td>
</tr>
<tr>
<td>Anschaffungskosten Hardware (Entwicklungs-, Test- und Produktivumgebung)</td>
<td>Reduktion der Einstandspreise</td>
</tr>
<tr>
<td>- Applikationsserver/ Betriebssystem</td>
<td>Einsparung von Personalkosten</td>
</tr>
<tr>
<td>- Datenbankserver/ Betriebssystem</td>
<td>Einsparungen durch Bündelung des Einkaufvolumens (weniger Bestellvorgänge/Transaktionen) und Einsparung von Eilbestellungen</td>
</tr>
<tr>
<td>Anschaffungskosten Software</td>
<td>Abbau von Überstunden</td>
</tr>
<tr>
<td>- Lizenzkosten</td>
<td>Reduktion von Prozess-/Transaktionskosten (abhängig von der Anzahl an Bestellungen/Transaktionen)</td>
</tr>
<tr>
<td>Projektkosten für die Einführung</td>
<td>- Reduktion von Erfassungsarbeiten bzw. administrativen Tätigkeiten</td>
</tr>
<tr>
<td>- Kosten für Programmierung nötiger Anpassungen (Customizing)</td>
<td>- Reduktion von Erfassungsfehlern</td>
</tr>
<tr>
<td>- Installationskosten</td>
<td>- Reduktion manueller Überprüfungsschritte</td>
</tr>
<tr>
<td>- Kosten für Testdurchführung</td>
<td>- Reduktion manueller Archivierung</td>
</tr>
<tr>
<td>- Kosten für Pilot- bzw. Parallelbetrieb</td>
<td></td>
</tr>
<tr>
<td>- Kosten für Schulung und Training der betroffenen Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>- Kosten für Schulung und Training der Lieferanten</td>
<td></td>
</tr>
<tr>
<td>- Kosten für die Softwareauswahl</td>
<td></td>
</tr>
<tr>
<td>- Reisekosten</td>
<td></td>
</tr>
<tr>
<td>Integrationskosten</td>
<td></td>
</tr>
<tr>
<td>- Kosten für die Integration mit internen/externen Systemen</td>
<td></td>
</tr>
<tr>
<td>- Kosten für die Entwicklung bzw. Anpassung von Schnittstellen</td>
<td></td>
</tr>
<tr>
<td>- Kosten für die Anbindung der Lieferanten</td>
<td></td>
</tr>
<tr>
<td>nicht monetär bewertbarer Nutzen</td>
<td></td>
</tr>
<tr>
<td>niedrigere Lagerbestände (Bestandsoptimierung)</td>
<td></td>
</tr>
<tr>
<td>- Senkung der Lagerhaltungskosten</td>
<td></td>
</tr>
<tr>
<td>- höhere Liquidität</td>
<td></td>
</tr>
<tr>
<td>- Verringerung der nicht verkaufsähnlichen Ware durch nachfrageorientiertes Bestandsmanagement</td>
<td></td>
</tr>
<tr>
<td>kürzere Durchlaufzeiten</td>
<td></td>
</tr>
<tr>
<td>Beschleunigung des Workflows für Freigaben</td>
<td></td>
</tr>
<tr>
<td>Einsparungen in der Rechnungsprüfung durch Sammelrechnungen/Gutschriften bzw. bessere Skontoausnützung</td>
<td></td>
</tr>
<tr>
<td>Kosten</td>
<td>Nutzen</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Kosten für die Entwicklung des Online-Katalogmanagements</td>
<td>mehr Kapazitäten für den strategischen Einkauf sowie für Führungsaufgaben</td>
</tr>
<tr>
<td>Kosten für die Anbindung an ein Unternehmensportal bzw. die Entwicklung eines Lieferantenportals</td>
<td>höhere Flexibilität gegenüber Nachfrageschwankungen, bessere Ausnutzung von Produktionskapazitäten sowie höhere Produktverfügbarkeit</td>
</tr>
<tr>
<td>Kosten für Möbel, Arbeitsplätze bzw. Klima-Geräte</td>
<td>beschleunigte Produktentwicklung und –einführung</td>
</tr>
<tr>
<td>Kosten für den Roll-Out an anderen Standorten</td>
<td>Informationen stehen ohne räumliche und zeitliche Einschränkungen zur Verfügung</td>
</tr>
<tr>
<td>Nutzungskosten</td>
<td>erhöhte Wettbewerbsfähigkeit</td>
</tr>
<tr>
<td>- Transaktionsgebühren auf elektronischen Marktplätzen</td>
<td>- zeitliche Wettbewerbsvorteile</td>
</tr>
<tr>
<td>- laufende Gebühren für externe Service-Provider (ASP, Web- oder Application-Hosting)</td>
<td>- Imageverbesserung (technisch auf dem neuesten Stand)</td>
</tr>
<tr>
<td>Kosten für Administration, Wartung und Anwender-Support (intern)</td>
<td>Erhöhung der Kundenzufriedenheit</td>
</tr>
<tr>
<td>Kosten für Support und Wartungsverträge (extern)</td>
<td>- steigende Umsätze</td>
</tr>
<tr>
<td>Verwaltungskosten</td>
<td>- Erhöhung der Produktbindung</td>
</tr>
<tr>
<td>Kosten für die Systembetreuung durch Programmierer</td>
<td>Erhöhung der Lieferantenzufriedenheit</td>
</tr>
<tr>
<td>- zeitliche Wettbewerbsvorteile</td>
<td>- vorteilhaftere Zahlungsbedingungen</td>
</tr>
<tr>
<td>- Imageverbesserung (technisch auf dem neuesten Stand)</td>
<td>- besserer Service</td>
</tr>
<tr>
<td>Kosten für die Pflege der Kataloge</td>
<td>Erschließung von Lieferantenmärkten in neuen Gebieten</td>
</tr>
<tr>
<td>Anteilige IT-Gemeinkosten</td>
<td>aktuellere Datenbestände</td>
</tr>
<tr>
<td>Kosten für Updates und deren Verteilung</td>
<td>Erhöhung der Qualität von Produkten und Dienstleistungen</td>
</tr>
<tr>
<td>Kosten für die Datenübertragung (Internet, EDI)</td>
<td>bessere Informationen/Erhöhung der Markttransparenz</td>
</tr>
<tr>
<td>Plattformkosten</td>
<td>höhere Motivation bei den Mitarbeitern im Einkauf, den Bedarsträgern und den Führungskräften</td>
</tr>
<tr>
<td>- Rechenleistung</td>
<td></td>
</tr>
<tr>
<td>- Speicherung, Backup und Archivierung der Daten</td>
<td></td>
</tr>
<tr>
<td>- Monitoring</td>
<td></td>
</tr>
<tr>
<td>Kosten</td>
<td>Nutzen</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Re-Investition (Ersatz für Hardware-Komponenten)</td>
<td>intensivere Zusammenarbeit mit dem Lieferanten bzw. engere Lieferantenbindung</td>
</tr>
<tr>
<td></td>
<td>- Erhöhung der Zuverlässigkeit der Lieferanten</td>
</tr>
<tr>
<td>Kapitalkosten</td>
<td>- Verbesserung der Liefertreue und Lieferfähigkeit der Lieferanten</td>
</tr>
<tr>
<td></td>
<td>effektivere Gesamtorganisation durch Optimierung der Prozesse</td>
</tr>
</tbody>
</table>

Tabelle 8: Kosten- und Nutzenaspekte von E-Procurement-Projekten

Um die Bewertung der Wirtschaftlichkeit für eine IT-Anwendung durchzuführen, ist weiters eine Spannbreite in Jahren festzulegen, welche sich an der Lebensdauer (engl. life-

247 Das Pareto- oder 80/20-Prinzip besagt, dass eine kleine Anzahl an Ursachen, Anstrengungen oder Aufwänden (20 %) zu einer großen Anzahl an Wirkungen, Ergebnissen oder Erträgen (80 %) führt (vgl. Koch, 2004, S. 11)

248 vgl. Brugger, 2005, S. 84ff
cycle) der Lösung orientieren soll. Bei E-Procurement-Lösungen ist (wie generell bei IT-Projekten) ein betrachteter Nutzungszeitraum von fünf bis zehn Jahren sinnvoll.249

4.3.3 Studien zur Wirtschaftlichkeit

Es existieren zwar keine Studien zur Wirtschaftlichkeit von E-Procurement-Lösungen, Untersuchungen beschäftigen sich jedoch mit der Fragestellung, welchen Nutzen Unternehmen durch die Einführung eines solchen Systems feststellen bzw. wie hoch die durchschnittlichen Einsparungen bei den Einstandspreisen und Prozesskosten sind.

249 vgl. Brugger, 2005, S. 147
250 vgl. BME, 2008, S. 8f und vgl. Kapitel 3.9
251 vgl. ECR Europe, 2002
Wirtschaftlichkeit

auf Lieferanten, als auch auf Kundenseite – im Durchschnitt um 13,3 Prozent gesenkt werden, die Spannbreite lag dabei bei den mittleren 80 Prozent der Unternehmen zwischen 12 und 28 Prozent. Die Regalverfügbarkeit, welche besonders für den Handel interessant ist, konnte weitaus durchschnittlich um sieben Prozent verbessert werden. Die Anzahl der Produkte, welche in die CPFR-Lösung integriert werden, beläuft sich überwiegend auf 20 bis 160.252

Eine Befragung von 16 Spezialisten im Bereich E-Procurement anlässlich des 38. BME-Symposiums 2003 in Berlin ergab, dass sich die Investition in eine E-Procurement-Lösung im Normalfall in zwei bis drei Jahren amortisiert.253 Nach Peukert & Ghazvinian ist ein ROI bei Großunternehmen bereits nach 10 bis 18 Monaten realistisch.254

Zusätzlich zu den bereits angeführten Studien existiert eine Vielzahl von Fallstudien, welche sich mit der Einführung von E-Procurement-Systemen mit den verschiedensten Funktionalitäten in diversen Unternehmen (z.B. BMW, Siemens, Miele, MAN, etc.) beschäftigt. Diese sind sowohl auf den Internetseiten der verschiedenen Lösungsanbieter als auch in der entsprechenden Fachliteratur zu finden.255

4.3.4 Einflussfaktoren

Tabelle 9 beinhaltet ausgewählte Faktoren, welche die Wirtschaftlichkeit von E-Procurement- oder SRM-Systemen beeinflussen und somit einen Grund für die großen Spannbreiten im Bereich der Einsparungen in den in Kapitel 4.3.3 angeführten Studien

252 vgl. Rode, 2002
253 vgl. o.V., 2003, S. 7
254 vgl. Peukert & Ghazvinian, 2001, S. 217
255 vgl. z.B. Nenninger & Lawrenz, 2002, S. 185-319 oder Steiner & Lang, 2002 über die Einführung bei IBM
256 vgl. Newtron, 2002, S. 1f
darstellen. In gewissen Branchen (z.B. der Luftfahrtbranche) sind Einstandspreisreduktionen nicht oder nur schwer zu verwirklichen, da die hohen Anforderungen an Qualität und Sicherheit oftmals keine freie Lieferantenauswahl erlauben und Einsparungen bei den Preisen zu höheren Aufwänden zur Beseitigung von Qualitätsmängeln führen können.257

Zusätzlich zu den in Tabelle 9 angeführten Faktoren hängt die Wirtschaftlichkeit davon ab, ob die Prozesse in der Beschaffung bereits vor der Systemumsetzung automatisiert und fest definiert ablaufen oder manuelle, ungenau definierte Beschaffungsprozesse im Unternehmen vorherrschen. Im zweiten Fall ergibt sich ein höherer Nutzen durch die Einführung des E-Procurement-Systems aufgrund der parallelen Strukturierung und Anpassung der Prozesse.258

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branche</td>
<td>Größe des Unternehmens, Marktstellung, Technisierungsgrad, Abhängigkeiten, Beschaffungsvolumen</td>
</tr>
<tr>
<td>Produkt</td>
<td>Produktpaket, Variantenvielfalt, Produktlebenszyklus, Komplexität des Beschaffungsprozesses</td>
</tr>
<tr>
<td>Markt</td>
<td>Lieferantensituation, Abhängigkeiten, Marktzugang, Kundenportfolio</td>
</tr>
<tr>
<td>Organisation</td>
<td>Führungsstruktur, Zentralisierung/Dezentralisierung</td>
</tr>
<tr>
<td>Geografie</td>
<td>Fertigungsstätten, innerbetriebliche Logistik, Herkunft der Lieferanten</td>
</tr>
</tbody>
</table>

Tabelle 9: Faktoren, von denen die Wirtschaftlichkeit von E-Procurement-Systemen abhängt259

Laut Nekolar kann das ganze Potenzial im E-Procurement Bereich nur genutzt werden, wenn die IT-Unterstützung der Beschaffungsprozesse in professioneller Weise betrieben wird, das heißt, wenn alle notwendigen Beschaffungsprozesse über ein Workflow basiertes System abgewickelt werden und eine elektronische Anbindung der wichtigsten Partner in der Wertschöpfungskette (Lieferanten, Partner) erfolgt.260

4.3.5 Methodisches Vorgehen

Zusammenfassend kann gesagt werden, dass keine allgemeine Aussage darüber getroffen werden kann, ob die Einführung einer E-Procurement-Lösung wirtschaftlich für ein

257 vgl. Eyholzer, Kuhlmann, & Münger, 2002, S. 73
258 vgl. Subramanian & Shaw, 2004, S. 168f
259 Eigene Darstellung, Daten entnommen aus Eyholzer, Kuhlmann, & Münger, 2002, S. 73 und Kollmann, 2007, S. 170
260 vgl. Nekolar, 2003, S. 2
Unternehmen ist oder nicht. Es ist daher für jedes Projekt notwendig, im Vorhinein eine Wirtschaftlichkeitsanalyse bzw. eine ROI-Betrachtung durchzuführen.\footnote{vgl. Peukert & Ghazvinian, 2001, S. 217}

\footnote{Eigene Darstellung}
Das Projektteam, das sowohl Mitglieder aus der IT als auch aus dem Fachbereich enthalten soll, führt die Schritte zur Entscheidungsvorbereitung durch und spricht eine Empfehlung anhand der erarbeiteten und priorisierten Informationen aus. Die endgültige Entscheidung liegt jedoch beim Entscheidungsträger, der in den meisten Unternehmen im Top-Management angesiedelt ist. Wie bereits angeführt, ist eine Miteinbeziehung der betroffenen Stakeholder (insbesondere Lieferanten und betroffene Mitarbeiter) bereits während der Entscheidungsvorbereitung nötig.

Eine Analyse der Schwachstellen sowie des Automatisierungspotenzials hilft dem Unternehmen dabei, seine Sollprozesse zu definieren und daraus Anforderungen (z.B. Funktionalitäten, Sicherheitsaspekte, Art der Lieferantenanbindung, Implementierungsvariante) an eine entsprechende Lösung abzuleiten. Weitere Ergebnisse aus dieser Phase sind die für die IT-Unterstützung geeigneten Produkte und Lieferanten sowie Voraussetzungen, die erfüllt werden müssen, damit eine wirtschaftliche Einführung überhaupt möglich ist (z.B. Anpassung der Prozesse, Reduktion der Lieferantenanzahl).

Zur Unterstützung bei der Softwareauswahl bietet sich die Nutzwertanalyse an, da die ausschlaggebenden Kriterien bei einer E-Procurement-Lösung meist nicht monetär bewertbar sind (z.B. Referenzkunden, geplante Projektdauer) und sich diese Methode daher gut zum Vergleich nutzen lässt. Wenn sich das Projektteam aufgrund der Ergebnisse der NWA nicht auf einen Anbieter bzw. eine Lösung festlegt, können die nachfolgenden Schritte (Wirtschaftlichkeitsanalyse und Festlegung alternativer Aspekte) auch für mehrere Anbieter durchgeführt und die Entscheidung erst im Anschluss getroffen werden.

Zur Beurteilung der Wirtschaftlichkeit empfiehlt sich, eine ROI-Betrachtung in Kombination mit einer Amortisationsrechnung vorzunehmen. Die Berechnung des ROI ist relativ einfach durchzuführen. Zusätzlich setzt die Methode voraus, dass sich das Unternehmen im Vorfeld mit Kosten- und Nutzenaspekten auseinandersetzt und die

263 vgl. Stoll, 2007, S. 139
Risiken bei der Einführung einer solchen Lösung bestimmt. Der Nachteil, dass Nutzenaspekte nur dann in die Kennzahl einfließen, wenn sie einen direkten Beitrag zum Unternehmensergebnis leisten, wird dadurch kompensiert, dass die restlichen relevanten Aspekte parallel zur Berechnung der Kennzahl analysiert und dem Entscheidungsträger vorgelegt werden und somit nicht verloren gehen. Aufgrund der schwierigen Nutzenbewertung bietet sich an, für die Zeitspanne der Betrachtung die untere Grenze von fünf Jahren heran zu ziehen, da eine realistische Schätzung weiter in die Zukunft nur schwer umsetzbar ist. Die Amortisationsrechnung gibt Auskunft darüber, innerhalb welchen Zeitraumes sich die Investition in ein E-Procurement-System bezahlt macht. Dieser Punkt ist vor allem für Konzerne wichtig, welche nur Projekte mit einem schnellen ROI durchführen.

Wie aus Abbildung 16 entnommen werden kann, ist das Ergebnis aus der Wirtschaftlichkeitsanalyse nicht immer der ausschlaggebende Punkt für die Entscheidungsfindung. Abhängig vom jeweiligen Unternehmen können auch über die Wirtschaftlichkeit hinaus gehende Aspekte, welche eine Einführung auf den ersten Blick vielleicht nicht rechtfertigen, ausschlaggebend für die Entscheidung sein.

Nach Peukert & Ghazvinian zeigt sich zum Beispiel eine spürbare Entwicklung dahingehend, dass die schnelle Erreichung eines ROI bei der Einführung von E-Procurement nicht mehr den Hauptaspekt für ein Unternehmen darstellt. Für viele Firmen ist E-Procurement eine strategische Entscheidung, um technisch auf dem neuesten Stand und den Herausforderungen des E-Business gewachsen zu bleiben.264

Die entwickelte Vorgehensweise zur Entscheidungsfindung wird in Kapitel 5 anhand des geplanten Projektes bei der Fa. Datacon angewendet.

\[264\] vgl. Peukert & Ghazvinian, 2001, S. 217
5 Fallbeispiel Fa. Datacon

5.1 Unternehmensbeschreibung und Aufgabenstellung

Das Projektteam für das geplante B2B-Portal setzt sich aus dem Leiter der Abteilung SCM für den Fachbereich, sowie aus dem Portalverantwortlichen und der Autorin für das IT Management (ITM) zusammen.

265 http://www.besi.com
266 vgl. Datacon, 2008
5.2 Anforderungsanalyse

5.2.1 Festlegung der Ziele

Bevor die Definition der Sollprozesse sowie die Analyse der Anforderungen an die Lösung begonnen werden konnten, galt es, die Ziele und Nichtziele zu definieren, die durch die E-Procurement-Lösung für das Unternehmen erreicht werden sollen (siehe auch Kapitel 3.5).

5.2.2 Ist-Analyse

sind dem Anhang zu entnehmen. Weiterführende Informationen zur Modellierung mit Flussdiagrammen kann der entsprechenden Fachliteratur entnommen werden.268

Im Moment wird in der Beschaffungsabteilung, welche aus sechs Disponenten und drei strategischen Einkäufern besteht, das Modul MM (Materials Management) des ERP-Systems SAP ERP eingesetzt. Alle Prozessschritte, die nicht direkt über dieses System abgewickelt werden können, werden durch das Microsoft Office-Paket (z.B. Excel für die Erstellung der Forecasts oder Powerpoint für die Lieferantenbeurteilung) sowie Lotus Notes als E-Mail-Client unterstützt.

5.2.2.1 Schwachstellenanalyse

Durch die Analyse des derzeitigen Beschaffungsprozesses sowie der eingesetzten Systeme wurden folgende Schwachstellen des Prozesses identifiziert:

\textit{Medienbrüche}

\textit{Schwierigkeit für Bedarfsträger, Bestellanforderungen zu erstellen}

ERP-Systeme wie SAP ERP sind auf die Beschaffung von direkten Gütern ausgelegt, unterstützen jedoch auch die Beschaffung von indirekten Gütern, Dienstleistungen und Investitionen. Die Erstellung einer Bestellanforderung (BANF) ist jedoch komplex und für Bedarfsträger im Unternehmen, die nicht in der Beschaffungsabteilung beschäftigt sind

268 vgl. z.B. Becker, 2008, S. 126-129

Mangelnde Prozesstransparenz

Mitarbeiter, die einen Artikel benötigen, rufen in der Disposition an, um den Liefertermin für das benötigte Produkt zu erfragen. Wenn der Liefertermin im ERP-System nicht bestätigt wurde, muss der zuständige Disponent direkt beim Lieferanten nachfragen und Rückmeldung an den Bedarfsträger geben. Dasselbe gilt für Lieferanten, die den Lagerbestand von Artikeln zur Befüllung des Konsignationslagers benötigen. Die Beschaffungsabteilung ist in jeden dieser Vorgänge einbezogen und verliert durch die Bearbeitung Zeit, die an anderer Stelle für die Bearbeitung dringender und kritischer Bestellungen benötigt würde.

Manuell erstellter Forecast

Die entdeckten Schwachstellen im Beschaffungsprozess sind erste Ansätze, in welchen Bereichen die geplante E-Procurement-Lösung greifen soll.

5.2.2.2 Analyse des Automatisierungspotenzials

5.2.3 Soll-Analyse

Aufbauend auf die definierten Ziele, die Ist-Prozesse sowie die Ergebnisse aus der Analyse der Schwachstellen und des Automatisierungspotenzials im Unternehmen galt es, die Sollprozesse, die mit Hilfe des geplanten B2B-Portals umgesetzt werden sollen, festzulegen und daraus Anforderungen an das System abzuleiten und zu priorisieren. Dabei wurde darauf geachtet, dass nur Funktionalitäten erfasst werden, die dem Unternehmen wirklich Einsparungspotenzial bieten bzw. die Unternehmensstrategie unterstützen. Schwachstellen, die jedoch nicht oder nur mit sehr hohem Aufwand automatisiert bzw. verbessert werden können sowie solche, wo der Aufwand für die Umsetzung die möglichen Einsparungen übersteigen würde (z.B. die Schwierigkeit der Bedarfsträger, eine BANF zu erstellen), wurden daher nicht als Anforderungen aufgenommen.

Die Sollprozesse der Funktionalitäten, welche in diesem Umfang bis jetzt noch nicht im Unternehmen durchgeführt werden, wurden wie die Ist-Prozesse in Kapitel 5.2.2 mit

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Betroffene Lieferanten</th>
</tr>
</thead>
<tbody>
<tr>
<td>operativer Einkauf</td>
<td></td>
</tr>
<tr>
<td>Bestätigung und Änderung von Aufträgen durch den Lieferanten (Preis/Liefertermin/Produktbezeichnung) sowie automatischer Abgleich im Backendsystem</td>
<td>ABC (ca. 550)</td>
</tr>
<tr>
<td>kooperative Planung mit dem Lieferanten inkl. Forecast</td>
<td>A (ca. 75)</td>
</tr>
<tr>
<td>Feedbackmöglichkeit zum Forecast durch den Lieferanten</td>
<td>A (ca. 75)</td>
</tr>
<tr>
<td>Abfrage des Lagerbestandes durch den Lieferanten</td>
<td>AB (ca. 300)</td>
</tr>
<tr>
<td>Einbinden des Lagerbestandes vom Lieferanten in das Portal</td>
<td>AB (ca. 300)</td>
</tr>
<tr>
<td>strategischer Einkauf</td>
<td></td>
</tr>
<tr>
<td>automatisch aus SAP generierte monatliche Lieferantenbewertung (Liefertreue, Qualität) über die letzten 12 Monate, die der Lieferant jederzeit einsehen kann</td>
<td>A (ca. 75)</td>
</tr>
<tr>
<td>Einstellung geplanter Maßnahmen aufgrund der Lieferantenbewertung (durch den Lieferanten)</td>
<td>A (ca. 75)</td>
</tr>
<tr>
<td>Nachverfolgung der Lieferantenmaßnahmen auf Umsetzung (Historie)</td>
<td>A (ca. 75)</td>
</tr>
<tr>
<td>Aufnahme und einheitliche Speicherung von Daten potenzieller neuer Lieferanten (z.B. mittels Lieferantenfragebogen/-formular)</td>
<td>für alle potenziellen neuen Lieferanten</td>
</tr>
</tbody>
</table>

Tabelle 10: Anforderungen an die E-Procurement-Lösung

270 Eigene Darstellung

Anwendungsfälle (engl. use cases) werden genutzt, um die Anforderungen an ein System zu erfassen und das Verhalten eines Systems darzustellen. Die Hauptkonzepte bei Anwendungsfällen sind Akteure, Anwendungsfälle und das System. Dabei ist zu beachten, dass Anwendungsfälle nur einige Gesichtspunkte von Geschäftsprozessen beschreiben und daher nicht mit Geschäftsprozessen gleichgesetzt werden dürfen.²⁷¹

In den dargestellten Anwendungsfällen sind die Lieferanten Akteure, diese werden bei der Beschreibung der Anwendungsfälle als Benutzer bezeichnet. Das System ist das geplante B2B-Portal und die Anwendungsfälle sind typische Szenarien, die über das Portal abgewickelt werden sollen.

Nach der Entscheidung für einen Anbieter und einem Gespräch über die tatsächliche Umsetzung der einzelnen Anforderungen müssen die Sollprozesse angepasst bzw. im Fall der strategischen Funktionalitäten auch durch Anwendungsfallkarten dargestellt werden.

Für weiterführende Informationen zu Anwendungsfällen und deren Modellierung sei auf die entsprechende Fachliteratur im Bereich Unified Modeling Language (UML) verwiesen.²⁷²

Das Ergebnis aus der Anforderungsanalyse, das heißt die priorisierten Funktionen (Priorität 1), die zukünftig über das Portal zur Verfügung stehen sollen sowie die betroffene Anzahl an Lieferanten, können aus Tabelle 10 entnommen werden. Die Auswahl der Lieferanten ist bereits im Vorhinein nötig, da diese die Kosten für die Lösung durch die nötige Anbindung und die Lizenzkosten pro Lieferant beeinflussen. Die Selektion der Produkte, welche durch die Lösung elektronisch unterstützt beschafft werden sollen, erfolgt in Zusammenarbeit mit dem ausgewählten Lösungsanbieter und den Lieferanten im Anschluss an die Softwareauswahl.

²⁷² vgl. z.B. Kecher, 2006, S. 197-212
Zusätzlich zu den ermittelten Anforderungen sollen die Inhalte im Portal zweisprachig (deutsch und englisch) zur Verfügung stehen.

5.2.4 Request for Information (RFI)

Noch vor dem Abschluss der Anforderungsanalyse wurde anhand der Zielsetzungen sowie der festgelegten Kriterien für die Auswahl einer Standardsoftware (vgl. Kapitel 3.5.5) ein Fragebogen (siehe Anhang) zur Einholung von Informationen für die Softwareauswahl erstellt, welcher einen Überblick über die Softwareanbieter am Markt schaffen sollte.

Nach ausführlicher Literatur- und Internetrecherche der verfügbaren Anbieter am Markt wurden sieben Unternehmen ausgewählt, welche den Fragebogen zur Softwareauswahl zugesandt bekommen haben. Eine Individualprogrammierung ist nicht vorgesehen.

Die Shortlist der Softwareanbieter setzt sich aus folgenden Unternehmen zusammen:

- **Best-of-Breed-Anbieter im E-Procurement-Bereich:**
 - Ariba\(^{273}\) (Ariba Buyer)
 - Perfect Commerce\(^{274}\) (Perfect Commerce Spend Management Suite)
 - Healy Hudson\(^{275}\) (Healy Hudson Dynamic Suite)

- **Anbieter von SRM-Lösungen:**
 - Newtron AG\(^{276}\) (newtron OMS/SRM/Lieferantenmanagement)
 - Onventis GmbH\(^{277}\) (Onventis TradeCore SRM)

- **reine Plattform-Anbieter bzw. Marktplatzbetreiber:**
 - SupplyOn AG\(^{278}\) (SupplyOn)

- **bekannte ERP-Systemhäuser über IT-Dienstleister:**
 - SAP über den IT-Dienstleister applied international informatics GmbH & Co. KG\(^{279}\).

Bis auf zwei der Anbieter (Ariba und Perfect Commerce) retournierten alle ausgewählten Softwareunternehmen den ausgefüllten Fragebogen. Nach Beendigung der Anforderungsanalyse erhielten die verbleibenden fünf Unternehmen ein Excel-Dokument, welches die gewünschten Prio1-Anforderungen (vgl. Tabelle 10) sowie eine Aufforderung

\(^{273}\) http://www.ariba.com
\(^{274}\) http://www.perfect.com
\(^{275}\) http://www.healy-hudson.com
\(^{276}\) http://www.newtron.net
\(^{277}\) http://www.onventis.de
\(^{278}\) http://www.supplyon.com/
\(^{279}\) http://www.aiinformatics.com
Fallbeispiel Fa. Datacon

5.2.5 Festlegung und Gewichtung der Kriterien

Im nächsten Schritt wurden die Kriterien zur Beurteilung der verschiedenen Lösungsalternativen im Team festgelegt und bewertet (vgl. Anhang Tabelle J). Kriterien, die unbedingt erfüllt werden müssen, wurden dabei als K.O.-Kriterien formulierte:

- Umsetzung aller Prio1-Anforderungen,
- Kompatibilität zu SAP R/3 als Backendsystem,
- Möglichkeit der Integration auf das bestehende SAP NetWeaver Portal sowie
- Mehrsprachigkeit der Lösung (deutsch und englisch).

280 Nur jene Softwareanbieter, die alle K.O.-Kriterien erfüllen, werden mittels der NWA verglichen.
5.2.6 Nutzwertanalyse und Entscheidung

<table>
<thead>
<tr>
<th>NUTZWERTANALYSE kumuliert</th>
<th>SAP-Lösung</th>
<th>SupplyOn</th>
<th>Newton SRM</th>
<th>Maximal mögliche Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Erreichbarkeit</td>
<td>3,00</td>
<td>3,00</td>
<td>1,50</td>
<td>3,50</td>
</tr>
<tr>
<td>1.2 Antwortzeit</td>
<td>1,67</td>
<td>1,67</td>
<td>3,00</td>
<td>3,50</td>
</tr>
<tr>
<td>2 Kosten für Prior-Anforderungen (einmalige und laufende externe Kosten für die nächsten fünf Jahre)</td>
<td>2,00</td>
<td>5,50</td>
<td>7,00</td>
<td>10,50</td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>2,33</td>
<td>2,83</td>
<td>2,33</td>
<td>3,50</td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Gesamtnutzwert</td>
<td>9,00</td>
<td>13,00</td>
<td>13,83</td>
<td>21,00</td>
</tr>
<tr>
<td>Rang</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 11: Kumuliertes Ergebnis aus der Nutzwertanalyse

281 Eigene Darstellung

5.3 Kosten-Nutzen-Analyse und ROI-Betrachtung

Um eine ROI-Betrachtung durchzuführen, müssen - wie in Kapitel 4.2.3 angeführt – die Kosten der Lösung dem potenziellen Nutzen im Vorfeld gegenübergestellt werden. Dazu wurden jene Aspekte aus Tabelle 8 herangezogen, welche für die geplanten Anforderungen des Systems von Relevanz sind.

Die externen Kosten wurden anhand der Kostenschätzung der Fa. Newtron errechnet. Die größten Kostenblöcke sind dabei:

- monatliche Nutzungskosten für die gehostete Lösung
- Implementierungsaufwand und Anbindung an das bestehende Portal
- Schulungskosten für Mitarbeiter und Lieferanten.

Intern fallen für die Lösung hauptsächlich Kosten für die Schulung der Anwender in der Beschaffung sowie für die Durchführung von Tests an. Weitere relevante Kostenblöcke entstehen durch den internen Aufwand für Administration, Wartung und Anwendersupport sowie für Kapitalkosten, welche durch die Investition entstehen.

Als wesentliche Nutzenaspekte des geplanten Portals wurden mittels Diskussion im Projektteam folgende definiert:

- **Senkung der Lagerhaltungskosten** und der nicht verkaufsähnlichen Ware durch CPFR-Maßnahmen und Verlagerung zum Lieferanten (Einsparungen bei den Zinskosten für das gebundene Kapital und beim Aufwand für die Lagerverwaltung)
- **weniger Erfassungsarbeiten und manuelle Prüfungen**, da die Auftragsbestätigungen vom Lieferanten erfasst und Lieferantenbeurteilung und Forecast automatisch erstellt und zugänglich gemacht werden
- **weniger Erfassungsfehler** durch Wegfall von Medienbrüchen und Doppeleingaben (hauptsächlich im Bereich Planung und Lieferzeiten)
- **Einsparung von Eilbestellungen** (Eil- und Expresszuschläge) aufgrund der besseren Prognosegenauigkeit durch die CPFR-Maßnahmen.
Besonders die monetäre Bewertung der Nutzenaspekte stellte eine große Herausforderung dar (vgl. Kapitel 4.2.2.2). Die Werte wurden mit Hilfe von Erfahrungswerten aus Studien sowie Schätzungen des zukünftigen Verlaufs ermittelt. Dabei war wichtig, dass der Fachbereich hinter den Schätzwerten steht, da dieser nach Einführung des Portals auch für die Erreichung geradestehen muss.

Aufgrund vertraulicher Daten (z.B. geplante Umsätze, Höhe der Lagerbestände), welche für die Ermittlung der Kosten- und Nutzenaspekte herangezogen wurden, stehen die Kosten-Nutzen-Analyse sowie die ROI-Betrachtung nur der Fa. Datacon zu Verfügung und werden nicht in dieser Arbeit veröffentlicht.

5.4 Zusätzliche relevante Aspekte

Wie in Kapitel 4.3.5 angeführt, existieren zusätzlich zu den in der Kosten-Nutzen-Analyse angeführten Aspekten weitere Punkte, welche für bzw. gegen die Einführung einer E-Procurement-Lösung sprechen und daher von Relevanz für die Entscheidungsfindung sein können.

Dazu gehören zum einen Nutzenaspekte, die nicht monetär bewertbar sind, aber trotzdem bei der Einführung des geplanten Systems generiert werden. Am Beispiel der Fa. Datacon zählen dazu:

- **höhere Kundenzufriedenheit** durch Senkung der Lieferzeit um ca. 1 Woche, Erhöhung der Produktverfügbarkeit sowie Verbesserung der Produktqualität; durch diesen Punkt erhöht sich die Wettbewerbsfähigkeit, es wird mit einer Umsatzsteigerung von bis zu fünf Prozent gerechnet
- **engere Lieferantenbindung und bessere Zusammenarbeit mit dem Lieferanten**
- **effektivere Gesamttorganisation** durch die Optimierung und Anpassung der Prozesse
- **höhere Mitarbeitermotivation** in der Disposition durch Verringerung der administrativen Tätigkeiten (z.B. Eingabe von Auftragsbestätigungen).

Ein weiteres Risiko stellt die Sicherheit der Lösung dar. Zum einen könnte sich die Datenhaltung beim ASP als nachteilig herausstellen, wenn das Unternehmen, deren Mitarbeiter oder die Lieferanten kein Vertrauen in diese Lösung setzen, was zum Beispiel Datenschutz und -sicherheit anbelangt. Zum anderen muss sichergestellt werden, dass die Lieferanten nur auf bestimmte Daten Zugriff haben (z.B. nur auf eigene Bestellungen) und diese im vordefinierten Rahmen ändern dürfen. Diese Änderungen müssen jedoch durch eine Historie vollständig nachvollziehbar sein. Ausgeschiedene Lieferanten dürfen keinen Zugriff mehr auf das Portal haben, darüber hinaus muss die Aktualität der Daten durch Festlegung einer sinnvollen Abruffrequenz im Portal gewährleistet sein.

Auch rechtliche Aspekte im Zusammenhang mit elektronischen Verträgen müssen adäquat durch die Lösung sichergestellt werden.

- Kann die Lösung sowohl mit Modulen als auch mit Einzelteilen bzw. Teilmodulen arbeiten (Liefer- und Kapazitätsplanung)?
• Welcher Planungshorizont (Jahres-/Quartals-/Monatsplanung) wird unterstützt? Ist es möglich, die Planung je nach Planungshorizont zu variieren (z.B. Stückzahlen bei der Monatsplanung, Kapazitäten bei der Quartalsplanung)?
• Ist eine Überwachung des Fertigungsfortschrittes in der Modulfertigung beim Lieferanten möglich?
• Existiert eine Schnittstelle zum SAP Konfigurator bzw. zum SAP Planungssystem (Forecast)?

5.5 Empfehlung und nächste Schritte

Wie aus der methodischen Vorgehensweise bei der Entscheidungsfindung in Kapitel 4.3.5 entnommen werden kann, gilt es nun, die Ergebnisse aus der Wirtschaftlichkeitsanalyse mit den zusätzlich relevanten Aspekten zu verknüpfen und daraus eine Empfehlung für die weitere Vorgehensweise abzuleiten.

Bevor die Lösung jedoch eingeführt wird, muss festgelegt werden, inwieweit die in Kapitel 5.4 identifizierten Risiken minimiert werden können bzw. wie das Unternehmen diese handhabt. Dazu bietet sich folgende Vorgehensweise an:

• Einladung der Fa. Newtron AG zu einem persönlichen Gespräch und Diskussion der folgenden Punkte:
 o Detaillierung der Anforderungen an die Lösung sowie Anpassung der Anzahl an angebundenen Lieferanten (eventuell anfänglich weniger) und Festlegung der zu unterstützenden Produkte
 o Abklärung der Unterstützung durch die Lösung im Bereich Modulfertigung (vgl. Kapitel 5.4)
 o Betrachtung und Klärung des Themas Sicherheit (Datenschutz und -sicherheit, Zugriffsberechtigungen, Ausfallsicherheit)
Abklärung der rechtlichen Aspekte
• Prüfung, ob die Einbindung des Tools der Fa. Newton in das bestehende Portal vorteilhafter ist als die Nutzung der gehosteten Lösung
• Lieferantenbefragung zur Akzeptanz des geplanten Portals und Überzeugung von der Win-Win-Situation.

Wenn die Antwort auf nur eine der Problemstellungen nicht zufriedenstellend für die Fa. Datacon ausfällt, muss das ganze Projekt in Frage gestellt und die weitere Vorgehensweise durch das Projektteam neu festgelegt werden.

5.6 Lessons Learned

Aufgrund der unterschiedlichen Funktionalitäten, Lizenzierungsmodelle und Implementierungsvarianten der einzelnen Lösungen im Bereich E-Procurement bzw. SRM sowie deren Umsetzung ist ein Vergleich der einzelnen Anbieter ohne ein persönliches Gespräch mit einem Verkaufsmitarbeiter oder Berater des entsprechenden Unternehmens bzw. ohne eine Demonstration der Lösung sehr schwierig. Diese Gespräche sollten bestmöglich bereits nach der Definition der Ziele durchgeführt werden, da die daraus gewonnenen Informationen und Ideen bereits bei der Festlegung der Sollprozesse bzw. bei der Anforderungsanalyse helfen. Besonders die Spezifikation der Anforderungen an die Lösung stellt einen wichtigen Schritt im Projekt dar. Eine unklare oder unzureichende Definition kann zu einer Änderung der Anforderungen während des Projekttes führen, was wiederum erhöhtem Aufwand für das Projektteam mit sich bringt.

Das durchgeführte Projekt hat weiters gezeigt, dass die Miteinbeziehung von Fachbereich (Beschaffung, Disposition, SCM) und IT in allen Schritten der Entscheidungsfindung wichtig ist. Aufgrund der unterschiedlichen Sichtweisen der beiden Interessensgruppen verläuft das Projekt sonst einseitig (technisch oder betriebswirtschaftlich) und führt nicht zum gewünschten Ergebnis für das Unternehmen.

Ebenso empfiehlt es sich, strategische Grundsätze (z.B. ist auch eine elektronische Marktplatzlösung denkbar?) soweit möglich bereits am Projektanfang ausführlich zu diskutieren. Durch diese Vorgehensweise erspart sich das Projektteam, Lösungen in den
Vergleich aufzunehmen, welche strategisch für das Unternehmen nicht in Frage kommen und am Ende ohnehin nicht relevant für die Entscheidungsfindung sind.
6 Resümee und Ausblick

Aufgabe dieser Diplomarbeit war es zum einen, die Wirtschaftlichkeit von Systemen zur IT-Unterstützung des Beschaffungsprozesses zu untersuchen, und zum anderen eine methodische Vorgehensweise zu entwickeln, welche ein Unternehmen bei der Entscheidungsfindung in diesem Bereich unterstützt.

Wie in Kapitel 3 dargestellt, ist die IT-Unterstützung der Beschaffungsprozesse ein äußerst komplexer Themenbereich. Dies äußert sich in einer Vielfalt unterschiedlicher Funktionalitäten, Implementierungsvarianten und Integrationsmöglichkeiten.

Auf die Frage, ob IT-Systeme zur Unterstützung der Beschaffungsprozesse für ein Unternehmen wirtschaftlich sind oder nicht, kann keine einheitliche Antwort gegeben werden. Die Anforderungen an ein solches System sowie deren Umsetzung sind so unterschiedlich wie die Unternehmen selbst.

Um einem Unternehmen, welches sich vor der Entscheidung für oder gegen eine E-Procurement-Lösung befindet, die Entscheidungsfindung zu erleichtern, wurde in Kapitel 4.3.5 eine methodische Vorgehensweise entwickelt und in Kapitel 5 exemplarisch am Fallbeispiel der Fa. Datacon erprobt. Dabei wurden die einzelnen Schritte von der Festlegung des Projektteams bis zur unternehmensinternen Priorisierung der relevanten Aspekte durchgeführt. Für die Fa. Datacon empfiehlt sich die Einführung einer E-

Ein weiterer Aspekt, der zukünftig für diese Thematik mitberücksichtigt werden sollte, ist die Problematik von E-Procurement in Schwellenländern (engl. Emerging Economies). Aufgrund des anhaltenden Trends europäischer Unternehmen, Waren und Dienstleistungen aus Kostengründen vermehrt aus Ländern wie Indien oder Malaysia zu beschaffen, spielen die Besonderheiten in diesem Bereich für einige Unternehmen durchaus eine Rolle.\(^{283}\)

Wie in Kapitel 3.9 angeführt, nutzen bereits 90 Prozent der deutschen Unternehmen einzelne E-Procurement-Funktionalitäten. Sowohl dieser Prozentsatz als auch die Integrationstiefe der eingesetzten Lösungen steigt dabei kontinuierlich. Daher ist es nur mehr eine Frage der Zeit, bis E-Procurement in den Unternehmen als

\(^{282}\) vgl. Link, 2003, S. 28 und Stoll, 2007, S. 140

\(^{283}\) vgl. z.B. Pani & Agrahari, 2007
Selbstverständlichkeit angeschen wird und wieder im Themenbereich „Beschaffung“ aufgeht, das heißt der Begriff „E-Procurement“ in dieser Hinsicht ausgedient hat.284

284 o.V., 2003, S. 9
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td> Prozess</td>
<td>Das Viereck symbolisiert einen Prozessschritt bzw. eine Aufgabe.</td>
</tr>
<tr>
<td> Entscheidung</td>
<td>Die Raute stellt eine Entscheidung dar. Es existiert jeweils genau ein Ergebnis für „ja“ bzw. „nein“.</td>
</tr>
<tr>
<td> Dokument</td>
<td>Dieses Symbol repräsentiert ein Dokument, wie zum Beispiel eine Anfrage oder eine Bestellung.</td>
</tr>
<tr>
<td> Pfeil</td>
<td>Der Pfeil verbindet die einzelnen Symbole miteinander und symbolisiert durch die Pfeilrichtung den Datenfluss im Prozess.</td>
</tr>
<tr>
<td></td>
<td>Jede Bahn (engl. swimlane) symbolisiert einen eigenen Verantwortlichkeitsbereich (Abteilung bzw. Funktionsbereich). Darüber kann der Name des Prozesses eingefügt werden.</td>
</tr>
<tr>
<td></td>
<td>Der gelbe Pfeil symbolisiert die Verbindung zu einem Prozess, der an anderer Stelle modelliert wird.</td>
</tr>
<tr>
<td></td>
<td>Dieses Symbol beinhaltet eine detaillierte Beschreibung der Tätigkeiten innerhalb eines Prozessschrittes.</td>
</tr>
<tr>
<td></td>
<td>Das rote Viereck symbolisiert einen Meilenstein im Prozessablauf.</td>
</tr>
<tr>
<td></td>
<td>Das blaue Viereck symbolisiert ein EDV-Werkzeug, welches zur Durchführung eines Prozessschrittes benötigt bzw. herangezogen wird (z.B. das ERP-System SAP).</td>
</tr>
<tr>
<td></td>
<td>Die grünen Vierecke symbolisieren die Verantwortlichkeiten für den jeweiligen Prozessschritt. „D/E“ steht dabei für Durchführung/Entscheidung, „M“ für Mitwirkung und „I“ für Information.</td>
</tr>
<tr>
<td></td>
<td>Der rote Kreis stellt einen Konnektor zur nächsten bzw. vorherigen Seite dar.</td>
</tr>
</tbody>
</table>

Anhang Tabelle A: Beschreibung der verwendeten Symbole des Flussdiagrammes
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Begriff</th>
<th>Abkürzung</th>
<th>Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best.</td>
<td>Besteller</td>
<td>L</td>
<td>Lager</td>
</tr>
<tr>
<td>BH</td>
<td>Buchhaltung</td>
<td>SCM</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>CO</td>
<td>Controlling</td>
<td>WE</td>
<td>Wareneingang</td>
</tr>
<tr>
<td>DI</td>
<td>Disposition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle B: Abkürzungen bei der Prozessmodellierung
Anhang Abbildung A: Operativer Istprozess – Seite 1
Business Execution (Operativer Beschaffungsprozess)

Prozessdarstellung

Anhang Abbildung B: Operativer Istprozess – Seite 2
Business Execution (Operativer Beschaffungsprozess)

1. Lieferung erhalten
 - nein
 - ja
 - Wareneingang
 - Lieferschein
 - WE/Dokument
 - Lieferant
 - Rückstandliste
 - Prozess Reklamation
 - nein
 - ja
 - Lieferung in Ordnung
 - Mengenmäßige und physikalische Überprüfung der gelieferten Ware
 - ja
 - nein
 - Prozess Lager
 - Einlagerung oder direkte Zustellung an den Besteller
 - Rechnungsprüfung und -buchung
 - Abwicklung der Zahlung

Anhang Abbildung C: Operativer Istprozess – Seite 3
Strategic Purchasing Process (Strategischer Beschaffungsprozess)

Prozesse
Dokumente
Prozessablauf
Tätigkeitsbeschreibung
Verantwortlichkeiten

Anforderer
- Identifizieren einer „Long-List of suppliers“

Lieferant
- Verteilung und Evaluierung der Lieferantes-Fragebögen
- Reduktion der Lieferanten aufgrund des Ergebnisses aus den Fragebögen

Lieferant
- Einholung der Angebote

Lieferant
- Entscheidung für Lieferanten
- Verhandlungsposition ggf. Lieferanten bestimmen

Lieferant
- Verhandlung der Ziele mit dem Lieferanten
- Ablaufvereinbarung geeignet

ja
nein

1
2

Anhang Abbildung D: Strategischer Istprozess – Seite 1
Anhang Abbildung E: Strategischer Istprozess – Seite 2
Fragebogen zur Softwareauswahl

Mein Name ist Barbara Gruber und ich bin verantwortlich für die Auswahl einer Softwarelösung zur Automatisierung des Beschaffungsprozesses für die Fa. Datacon Technology GmbH in Radfeld (Nähere Informationen unter: www.datacon.at).

Vielen Dank im Voraus für Ihre Mithilfe.

Allgemeine Angaben

Name der Firma

Anzahl der Mitarbeiter

Kontaktinformation

Name der Software

Welche Module sind für unsere Anforderungen nötig?

Stammen einzelne angebotene Module von Drittanbietern?

Wenn ja: Wie wird die Wartung bzw. der Support abgewickelt?

Produktbezogene Angaben

Funktionale Kriterien

Bitte geben Sie an, ob Ihre Lösung die geforderte Anforderung unterstützt und wenn ja, welches Modul dafür nötig ist.

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>ja</th>
<th>nein</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kooperative Planung inkl. Forecast (Collaborative Planning and Forecast)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedbackmöglichkeit zum Forecast durch den Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echtzeitabfrage des Lagerbestandes durch den Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auffüllung des Lagerbestandes (Replenishment/VMI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einbindung der Lagerbestandsinformation in das ERP-System des</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anforderung</td>
<td>ja</td>
<td>nein</td>
<td>Modul</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Lieferanten mittels Webservice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktualisierung von Adress- und Kontaktinformationen selbstständig durch den Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestätigung und Abänderung von Aufträgen durch den Lieferanten (automatischer Abgleich im Backendsystem)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatisch generierte Information an den zuständigen Einkäufer bei vorgenommenen Änderungen durch den Lieferanten (z.B. Lieferterminänderung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktualisierung von Produktstammdaten (Preis, Artikelnummer) durch den Lieferanten (nur bei Katalogartikeln oder generell bei allen Artikeln des zuständigen Lieferanten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abfrage von spezifischen Bestelldaten (Bestellnummer, Menge, Liefertermin) durch den Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtermöglichkeiten bei der Abfrage von Bestelldaten (z.B. nicht bestätigte Aufträge, Rückstände,...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatisch generierte Lieferantenbeurteilung (Liefertreue, Qualität) auf Monats- und Jahresbasis, die der Lieferant jederzeit einsehen kann</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einstellung geplanter Maßnahmen aufgrund der Lieferantenbeurteilung (durch den Lieferanten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Möglichkeit zur Nachverfolgung der Maßnahmen des Lieferanten (Historie)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentrale Verwaltung von Fertigungszeichnungen, Spezifikationen (mit Zugriff für den Lieferanten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterstützung elektronischer Ausschreibungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Erfassung diverser Dokumente (z.B. Fragebogen für neue Lieferanten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterstützung von Einkaufsauktionen (Reverse Auctions)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anbindung an externe Auktionsplattformen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterstützung elektronischer Kataloge für C- und MRO-Teile (Desktop Purchasing System)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatisierte Übernahme der Bestellung aus dem DPS nach SAP R/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einkauf kann weiterhin über das Modul Materialmanagement in SAP R/3 arbeiten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dokumente zur Information für Lieferanten zur Verfügung stellen (z.B. Standardeinkaufsbedingungen,...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentralisierte Verwaltung von Verträgen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertraglich vereinbarte Punkte aus Verträgen zur Verfügung stellen und als Grundlage für die Lieferantenbeurteilungskennzahlen verwenden (z.B. festgelegte Lieferzeit)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wenn Sie gewisse Funktionalitäten nicht anbieten, können Sie ein anderes Produkt von Ihnen oder einem anderen Softwareanbieter empfehlen, mit dem diese Funktionalitäten abgewickelt werden? Wenn ja, welches und für welche Funktionalitäten?
Benutzeroberfläche

Gibt es kontextsensitive Hilfefunktionen in allen Modulen?

In welchen Sprachen ist die Hilfe verfügbar?
☐ Deutsch ☐ Englisch ☐ Andere:

In welchen Sprachen ist die Benutzeroberfläche verfügbar?
☐ Deutsch ☐ Englisch ☐ Andere:

Systemvoraussetzungen

Welche Datenbanken werden verwendet bzw. unterstützt? Bitte auch Versionen angeben!

Muss diese Datenbank in einer eigenen Lizenz erworben werden?
☐ ja ☐ nein, ist Bestandteil des SW-Paketes

Vorhandene Dokumentation

Welche Art von Dokumentation ist für das Produkt vorhanden? (Schulungsunterlagen, Checklisten,...)

Ist es möglich, eine Demoversion der Lösung zu testen?

Schnittstellen

Gibt es eine zertifizierte Schnittstelle zu SAP R/3 (Modul Materialwirtschaft, Finanzbuchhaltung)?

Können Lieferanten direkt angebunden werden? Wenn ja, mittels welcher Technologie? (XML, EDI, Webservice...)

Gibt es eine Weboberfläche, über die Lieferanten zugreifen können?

Wenn ja, ist es möglich, die vorhandene Weboberfläche in ein SAP NetWeaver-Portal zu integrieren (ohne ein weiteres System nebenher pflegen zu müssen)?

Ist es aufwändig, zusätzliche Systeme oder Prozesse zu integrieren bzw. wie aufwändig ist eine Erweiterung des Produktsortiments?

Handelt es sich bei der Software um eine On-Demand-Lösung (Auslagerung an einen Provider/Plattform)?
Welche Formate unterstützen Sie bei elektronischen Katalogen (BMEcat, cXML, RosettaNet,...)?

Sonstiges
Wie werden Updates, Upgrades und Fehlerkorrekturen bzw. Erweiterungen installiert? Stellt die Installation einen enormen Zeitaufwand dar?

Wie häufig werden diese Updates bzw. Upgrades ausgeliefert? Sind diese Kosten im Preis der Software / Lizenz inkludiert?

Gibt es Release-Abhängigkeiten zu SAP Releases?

Reifegrad der Software

Kosten
Von welchen Faktoren sind die Gesamtkosten abhängig?

In welchem Bereich werden sich die Lizenzkosten bewegen?

Referenzkunden
Anzahl der Installationen

Davon Unternehmen in der Branche (Maschinenbau)?

Anzahl der Installationen mit SAP R/3 als Backendsystem?

Sicherheitsaspekte
Wodurch ist die Sicherheit/Zuverlässigkeit des Produktes gewährleistet?

Support
Beschreiben Sie die Modalitäten Ihres Wartungsvertrages:

Wie erfolgt die Einschulung in die Verwendung des E-Procurement-Systems?
Welchen Support gibt es bei Problemen mit Ihrer Software? Erreichbarkeit und Antwortzeiten?

Hotline?

Vor-Ort-Support?

Reaktionszeit auf Fehlermeldungen (Patch-Intervall)?

Hinweisdatenbank (ähnlich dem OSS von SAP)?

Sonstige Anmerkungen zu Ihrem Produkt (zusätzliche Features/Informationen):
Kooperative Planung und Forecast

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Abteilung SCM (Fa. Datacon)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monatliche Durchführung der Planung auf Monate-Quartals- und Jahresebene (Stückzahlen, Kapazitäten, Kapazitätsentwicklung)</td>
</tr>
<tr>
<td></td>
<td>Planzahlen sowie Lagerbestände über Portal verfügbar machen</td>
</tr>
<tr>
<td></td>
<td>Planung aufgrund der Rückmeldung des Lieferanten anpassen (zusätzliche Kapazitäten, Flexibilität)</td>
</tr>
</tbody>
</table>

Anhang Abbildung F: Sollprozess „Kooperative Planung und Forecast“
<table>
<thead>
<tr>
<th>Lieferantenbeurteilung</th>
<th>Abteilung SCM (Fa. Datacon)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lieferant</th>
<th>Abteilung SCM (Fa. Datacon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monatliche Generierung der Lieferantenbeurteilung aus SAP</td>
<td>SAP</td>
</tr>
<tr>
<td>Monatliche Generierung der Lieferantenbeurteilung aus SAP</td>
<td>SAP</td>
</tr>
<tr>
<td>Aufruf der aktuellen Lieferantenbeurteilung über das B2B-Portal</td>
<td>B2B-Portal</td>
</tr>
<tr>
<td>Einstellung geplanter Maßnahmen aufgrund der Lieferantenbeurteilung</td>
<td>B2B-Portal</td>
</tr>
<tr>
<td>Nachverfolgung der Maßnahmen auf Umsetzung</td>
<td></td>
</tr>
<tr>
<td>Maßnahme umgesetzt</td>
<td></td>
</tr>
<tr>
<td>Fertigmeldung der Maßnahme</td>
<td></td>
</tr>
</tbody>
</table>

Anhang Abbildung G: Sollprozess „Lieferantenbeurteilung“
<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>AF-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Artikeldaten einsehen</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Login, Artikelnummer</td>
</tr>
<tr>
<td>Ausgabe</td>
<td>Informationen zum Artikel (Artikelnr. DC, Bezeichnung DC, Artikelnr. des Lieferanten, Preis, Lagerbestand bei DC, Lagerbestandsgrenze)</td>
</tr>
<tr>
<td>Ergebnis</td>
<td>-</td>
</tr>
</tbody>
</table>

Standardablauf
1. Benutzer meldet sich am Portal an.
2. Benutzer startet die Abfrage durch Klick auf den Artikel-Button.
3. Alle freigegebenen Artikel des Benutzers werden aus SAP gelesen und untereinander angezeigt (sortiert nach Artikelnr. DC aufsteigend).
4. Benutzer klickt auf den gewünschten Artikel.
5. Informationen zum Artikel werden dem Benutzer angezeigt.

Variationen
A: Artikel wird über die Suchfunktion gesucht
5. Alle freigegebenen Artikel des Benutzers, die den Suchkriterien entsprechen, werden aus SAP gelesen.
6. Treffer für die gefundenen, freigegebenen Artikel (sortiert nach Artikelnr. DC aufsteigend) werden untereinander aufgelistet (0, 1, n).
7. Benutzer klickt auf den gewünschten Artikel.
8. Informationen zum Artikel werden dem Benutzer angezeigt.

Anhang Tabelle C: Anwendungsfallkarte „Artikeldaten einsehen“
<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>AF-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Bestellung einsehen</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Login, Bestellnummer</td>
</tr>
<tr>
<td>Ausgabe</td>
<td>Informationen zur Bestellung (Bestellnummer DC, Auftragsnummer des Lieferanten, Bestelldatum, Bestellpositionen mit Positionsnummer, Artikelnr. DC, Artikelnr. des Lieferanten, Stückzahl, Liefertermin)</td>
</tr>
<tr>
<td>Ergebnis</td>
<td>-</td>
</tr>
</tbody>
</table>

Standardablauf

1. Benutzer meldet sich am Portal an.
2. Benutzer startet die Abfrage durch Klick auf den Bestellung-Button.
3. Alle offenen Bestellungen des Benutzers werden aus SAP gelesen und untereinander angezeigt (nach Bestellnummer aufsteigend sortiert).
4. Benutzer klickt auf die gewünschte Bestellung.
5. Informationen zur Bestellung werden dem Benutzer angezeigt.

Variationen

A: Bestellung wird über die Suchfunktion gesucht.
4. Benutzer tippt den Suchbegriff (seine Auftragsnummer, Bestellnummer DC) in das Suchfeld über den angezeigten Bestellungen bzw. benutzt die vordefinierten Formularfelder zur Einschränkung der Bestellungen (Liefertermin von – bis, bestätigte Aufträge, geschlossene Bestellungen) und startet die Suche durch Klick auf den Finden-Button.
5. Alle Bestellungen des Benutzers, die den Suchkriterien entsprechen, werden aus SAP gelesen.
6. Treffer für die gefundenen Bestellungen (nach Bestellnummer aufsteigend sortiert) werden untereinander aufgelistet (0, 1, n).
7. Benutzer klickt auf die gewünschte Bestellung.
8. Informationen zur Bestellung werden dem Benutzer angezeigt.

Anhang Tabelle D: Anwendungsfallkarte „Bestellung einsehen“
<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>AF-03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Aufträge bestätigen</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Login, Bestellnummer, zu bestätigende Bestelldaten</td>
</tr>
<tr>
<td>Ausgabe</td>
<td>Information über die bestätigte Bestellung</td>
</tr>
<tr>
<td>Ergebnis</td>
<td>bestätigte Bestellanforderung</td>
</tr>
</tbody>
</table>

Standardablauf
1. # INCLUDE Bestellung einsehen
2. Benutzer klickt auf den Bestätigen-Button.
3. Änderbare Daten (Liefertermin, Preis, Auftragsnummer des Lieferanten) werden als editierbar angezeigt.
4. Benutzer ändert die gewünschten Daten und bestätigt die Änderung durch Klick auf den Bestätigen-Button.
5. Änderungen an der Bestellung werden in SAP durchgeführt, der Status der Bestellung wird auf „bestätigt“ gesetzt.
6. Dem Benutzer wird die erfolgreich bestätigte Bestellung angezeigt.

Variationen

A: Bestätigung weicht von der Bestellung ab (höherer Preis, späterer Liefertermin), Abweichung wird vom Disponenten akzeptiert.
5. Zuständiger Disponent erhält eine automatisch generierte Information über die Auftragsbestätigung, wenn der Preis erhöht bzw. der Liefertermin verschoben wurde.
6. Disponent akzeptiert die Änderung.
7. Änderungen an der Bestellung werden in SAP durchgeführt, der Status der Bestellung wird auf „bestätigt“ gesetzt.
8. Der Benutzer erhält eine automatisch generierte Information, dass die Bestätigung akzeptiert wurde.

B: Bestätigung weicht von der Bestellung ab (höherer Preis, späterer Liefertermin), Abweichung wird vom Disponenten nicht akzeptiert.
5. Zuständiger Disponent erhält eine automatisch generierte Information über die Auftragsbestätigung, wenn der Preis erhöht bzw. der Liefertermin verschoben wurde.
6. Disponent akzeptiert die Änderung nicht.
7. Der Benutzer erhält eine Information, dass die Bestätigung nicht akzeptiert wurde.
8. Der Benutzer setzt sich mit dem Disponenten in Kontakt bzw. bestätigt den Auftrag mit neuen Daten.
9. Solange Punkt 6 bis 8, bis der Disponent die Bestätigung akzeptiert.
10. Änderungen an der Bestellung werden in SAP durchgeführt, der Status der Bestellung wird auf „bestätigt“ gesetzt.
11. Der Benutzer erhält eine automatisch generierte Information, dass die Bestätigung akzeptiert wurde.

Anhang Tabelle E: Anwendungsfallkarte „Aufträge bestätigen“
Anhang Tabelle F: Anwendungsfallkarte „Aufnahme von Daten potenzieller Lieferanten“

<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>AF-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Aufnahme von Daten potenzieller Lieferanten</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Lieferantendaten (z.B. Firmenname, Kontaktdaten)</td>
</tr>
<tr>
<td>Ausgabe</td>
<td>Zusammenfassung der eingegebenen Daten</td>
</tr>
<tr>
<td>Ergebnis</td>
<td>Speicherung der Lieferantendaten in der Datenbank</td>
</tr>
</tbody>
</table>
2. Benutzer gibt die relevanten Daten ein und klickt auf den Speichern-Button.
3. Alle eingegebenen Daten werden in der Datenbank gespeichert.
5. Der verantwortliche Einkäufer erhält eine automatisch generierte Information mit den eingegebenen Daten des Benutzers. |
| Variationen | - |

Anhang Tabelle G: Anwendungsfallkarte „Lieferantendaten einsehen“

<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>AF-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td>Lieferantendaten einsehen</td>
</tr>
<tr>
<td>Eingabe</td>
<td>Login, Suchbegriff</td>
</tr>
<tr>
<td>Ausgabe</td>
<td>Informationen zum Lieferanten (Firmenname, Kontaktdaten, etc.)</td>
</tr>
<tr>
<td>Ergebnis</td>
<td>-</td>
</tr>
</tbody>
</table>
| Standardablauf| 1. Einkäufer meldet sich am Portal an.
2. Einkäufer startet die Abfrage durch Klick auf den Lieferanten-Button
3. Alle potenziellen Lieferanten des Benutzers werden aus der Datenbank gelesen und untereinander angezeigt (sortiert nach Firmenname aufsteigend).
4. Benutzer klickt auf den gewünschten Lieferant.
5. Informationen zum Lieferanten werden angezeigt. |
| Variationen | A: Lieferant wird über die Suchfunktion gesucht.
4. Einkäufer tippt den Suchbegriff (Firmenname, Land, Artikelgruppe, etc.) in das Suchfeld über den angezeigten Lieferanten und startet die Suche durch Klick auf den Finden-Button.
5. Alle Lieferanten des Einkäufers, die den Suchkriterien entsprechen, werden aus der Datenbank gelesen.
6. Treffer für die gefundenen Lieferanten (nach Firmenname aufsteigend sortiert) werden untereinander aufgelistet (0, 1, n).
7. Einkäufer klickt auf den gewünschten Lieferant.
8. Informationen zum Lieferanten werden dem Einkäufer angezeigt. |
Kostenschätzung für die angeführten Anforderungen (Angaben jeweils pro Jahr)

<table>
<thead>
<tr>
<th>Kostenart</th>
<th>einmalig/laufend</th>
<th>Kosten (€)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lizenzkosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten f. Anbindung an unser SAP NetWeaver-Portal (falls diese Leistung von Ihnen durchgeführt werden kann)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implementierungsaufwand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulungen f. Mitarbeiter (pro MA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulungen f. Lieferanten (pro Lieferant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten f. Anbindung der Lieferanten an das Portal (pro Lieferant)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Kosten</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle II: Kostenschätzung anhand der Anforderungen

<table>
<thead>
<tr>
<th>Anwendungsfall</th>
<th>Grad der Automatisierung (in %)</th>
<th>Dauer in Minuten</th>
<th>Häufigkeit des Anwendungsfalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>operativ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktualisierung von Adress- und Kontaktinformationen eines Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freigabe einer BANF aus dem Materialplan in SAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestätigung einer Auftragsposition (Preis/Liefertermin/Produktbezeichnung)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktualisierung von lieferantenspezifischen Produktstammdaten (Preise/Staffeln, Artikelnr. des Lieferanten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lieferant fragt im Einkauf spezifische Bestelldaten (Bestellnummer, Menge, Liefertermin) nach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponent urgiert überfällige Position per E-Mail oder telefonisch (inkl. Einpflegen der geänderten Daten durch den Einkauf)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versand der wöchentlichen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwendungsfall</td>
<td>Grad der Automatisierung (in %)</td>
<td>Dauer in Minuten</td>
<td>Häufigkeit des Anwendungs-falls</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Auftragsbestätigungsannahung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versand der wöchentlichen Liefererinnerung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versand aktueller Fertigungszeichnungen auf Nachfrage durch den Lieferanten oder bei Zeichnungsaenderungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katalogbeschaffung für Mitarbeiter (inkl. Auswahl v. Produkt und Lieferant, Erstellung und Pflege des Artikels, Wareneingang)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lieferant fragt im Einkauf nach bzgl. Details noch offener (Rahmen)-Verträge (Menge, Preis,...)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartalsmäßiger Versand von Liste aller offenen Rahmennaufträge > 10000 Euro und Bestätigung d. den Lieferant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nochmaliger Versand von Bestellungen an Lieferanten, die E-Mail nicht bekommen haben, Bestellung per Fax möchten,…</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung des Forecasts für Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abfrage d. Lagerbestandes beim Lieferanten od. bei uns durch den Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strategisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung und Versand der monatlichen Lieferantenbeurteilung (Liefertreue, Qualität)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erstellung und Versand der jährlichen Lieferantenbeurteilung (Liefertreue, Qualität)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aufnahme und Dokumentation der vom Lieferanten geplanten Maßnahmen aufgrund der Lieferantenbeurteilung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachverfolgung der Lieferantenmaßnahmen auf Umsetzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfrage bzw. Ausschreibung von neuen Produkten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auffinden neuer Lieferanten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwendungsfall</td>
<td>Grad der Automatisierung (in %)</td>
<td>Dauer in Minuten</td>
<td>Häufigkeit des Anwendungsfalls</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Niederschreiben von Daten potenzieller Lieferanten (z.B. mittels Lieferantenfragebogen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auffinden neuer Produkte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverse Dokumente im aktuellen Stand an (neuen) Lieferant senden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z.B. Standerdeinkaufsbedingungen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchführung (komplexer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preisverhandlungen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle I: Definierte Anwendungsfälle für Interviews

<table>
<thead>
<tr>
<th>Kriterium</th>
<th>Wichtigkeit (K.O., sehr hoch, hoch, mittel, niedrig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funktionalität der Lösung (über Prio1 hinaus)</td>
<td>mittel</td>
</tr>
<tr>
<td>Alle Prio1-Anforderungen erfüllt</td>
<td>K.O.</td>
</tr>
<tr>
<td>Kompatibilität zu SAP ERP als Backendsystem</td>
<td>K.O.</td>
</tr>
<tr>
<td>Integrierbar auf SAP NetWeaver Portal</td>
<td>K.O.</td>
</tr>
<tr>
<td>Alle gewünschten Funktionalitäten aus einer Hand</td>
<td>mittel</td>
</tr>
<tr>
<td>Oberfläche in deutsch und englisch verfügbar</td>
<td>K.O.</td>
</tr>
<tr>
<td>Schnittstellen zur Lieferantenanbindung</td>
<td>niedrig</td>
</tr>
<tr>
<td>Support</td>
<td>hoch</td>
</tr>
<tr>
<td>Kosten für Prio1-Anforderungen</td>
<td>hoch</td>
</tr>
<tr>
<td>Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>hoch</td>
</tr>
<tr>
<td>Sicherheit der Lösung</td>
<td>sehr hoch</td>
</tr>
<tr>
<td>Projektdauer</td>
<td>mittel</td>
</tr>
<tr>
<td>Vorhandene Dokumentation</td>
<td>mittel</td>
</tr>
<tr>
<td>Datenhaltung im eigenen Unternehmen (eigenes Hosting)</td>
<td>hoch</td>
</tr>
</tbody>
</table>

Anhang Tabelle J: Bewertungskriterien für die Nutzwertanalyse
Anhang Tabelle K: K.O.-Kriterien

<table>
<thead>
<tr>
<th>Kriterien / Alternativen</th>
<th>SAP-Lösung</th>
<th>Healy Hudson</th>
<th>SupplyOn</th>
<th>Onventis SRM</th>
<th>Newtron SRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Prio1-Anforderungen erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>nicht erfüllt</td>
<td>erfüllt</td>
</tr>
<tr>
<td>Kompatibilität zu SAP R/3 als Backendsystem</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
</tr>
<tr>
<td>Integrierbar auf SAP NetWeaver Portal</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
</tr>
<tr>
<td>Oberfläche in deutsch und englisch verfügbar</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
</tr>
<tr>
<td>Alle K.O.-Kriterien erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>erfüllt</td>
<td>nicht erfüllt</td>
<td>erfüllt</td>
</tr>
</tbody>
</table>

Anhang Tabelle L: Ermittlung der Gewichtungsfaktoren durch paarweisen Vergleich

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Gewicht</th>
<th>Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Support</td>
<td></td>
<td></td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 Kosten für Prio1-Anforderungen</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SUMMEN</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>1,00</td>
</tr>
</tbody>
</table>

(0 - weniger wichtig, 1 - gleich wichtig, 2 - wichtiger)
<table>
<thead>
<tr>
<th>Skala</th>
<th>Kriterien</th>
<th>0-1</th>
<th>2-3</th>
<th>4-5</th>
<th>6-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>"schlecht"</td>
<td>"ausreichend"</td>
<td>"gut"</td>
<td>"sehr gut"</td>
<td></td>
</tr>
<tr>
<td>1 Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Erreichbarkeit</td>
<td>MO - FR: 8 - 16 Uhr</td>
<td>MO - FR: 6 - 18 Uhr</td>
<td>24/5</td>
<td>24/7</td>
<td></td>
</tr>
<tr>
<td>1.2 Antwortzeit</td>
<td>innerhalb einer Woche</td>
<td>innerhalb von zwei Tagen</td>
<td>innerhalb von 6 Stunden</td>
<td>innerhalb einer Stunde</td>
<td></td>
</tr>
<tr>
<td>2 Kosten für Prioritäts-Anforderungen (einzmalige und laufende Kosten für die nächsten fünf Jahre)</td>
<td>>= 800.000 Euro</td>
<td>600.000 - 800.000 Euro</td>
<td>400.000 - 600.000 Euro</td>
<td><= 400.000 Euro</td>
<td></td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>Keine Referenzkunden mit SAP R/3</td>
<td>Referenzkunden mit SAP R/3 als Backendsystem nicht in derselben Branche</td>
<td>Referenzkunden derselben Branche und SAP R/3 als Backendsystem</td>
<td>Ausreichend DC-ähnliche Referenzkunden (selbe Branche, Größe, SAP R/3)</td>
<td></td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td>Daten werden redundant sowohl im eigenen ERP-System als auch beim Lösungsanbieter vorgehalten (on-demand Lösung)</td>
<td></td>
<td></td>
<td>Alle einkaufsrelevanten Daten werden komplett und redundanzfrei bei Datacon vorgehalten (eigenes Hosting)</td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle M: Zielerfüllungsfaktoren
NUTZWERTANALYSE Gruber

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Faktor</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Support</td>
<td>0,33</td>
<td>0,50</td>
<td>1</td>
<td>0,50</td>
<td>1</td>
<td>2,00</td>
<td>4</td>
<td>2,00</td>
<td>4</td>
</tr>
<tr>
<td>1.1 Erreichbarkeit</td>
<td>0,17</td>
<td>7</td>
<td>1,17</td>
<td>7</td>
<td>1,17</td>
<td>1</td>
<td>0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Antwortzeit</td>
<td>0,17</td>
<td>3</td>
<td>0,50</td>
<td>3</td>
<td>0,50</td>
<td>7</td>
<td>1,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Kosten für Prio1-Anforderungen (einmalige und laufende externe Kosten für die nächsten fünf Jahre)</td>
<td>0,50</td>
<td>1</td>
<td>0,50</td>
<td>4</td>
<td>2,00</td>
<td>4</td>
<td>2,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>0,17</td>
<td>7</td>
<td>1,17</td>
<td>7</td>
<td>1,17</td>
<td>6</td>
<td>1,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td>0,00</td>
<td>7</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
<td>1</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtnutzwert</td>
<td>3,33</td>
<td>4,83</td>
<td>4,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rang</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle N: Nutzwertanalyse Gruber

NUTZWERTANALYSE Kaiser

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Faktor</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Support</td>
<td>0,33</td>
<td>2</td>
<td>1,00</td>
<td>3</td>
<td>1,50</td>
<td>4</td>
<td>2,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Erreichbarkeit</td>
<td>0,17</td>
<td>5</td>
<td>0,83</td>
<td>5</td>
<td>0,83</td>
<td>5</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Antwortzeit</td>
<td>0,17</td>
<td>4</td>
<td>0,67</td>
<td>4</td>
<td>0,67</td>
<td>5</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Kosten für Prio1-Anforderungen (einmalige und laufende externe Kosten für die nächsten fünf Jahre)</td>
<td>0,50</td>
<td>2</td>
<td>1,00</td>
<td>3</td>
<td>1,50</td>
<td>4</td>
<td>2,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>0,17</td>
<td>4</td>
<td>0,67</td>
<td>5</td>
<td>0,83</td>
<td>4</td>
<td>0,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td>0,00</td>
<td>6</td>
<td>0,00</td>
<td>3</td>
<td>0,00</td>
<td>3</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtnutzwert</td>
<td>3,17</td>
<td>3,83</td>
<td>4,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rang</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle O: Nutzwertanalyse Kaiser
NUTZWERTANALYSE Stegherr

<table>
<thead>
<tr>
<th>Kriterien</th>
<th>Faktor</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
<th>Ziel-erfüllung</th>
<th>Nutzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Support</td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Erreichbarkeit</td>
<td>0,17</td>
<td>6</td>
<td>1,00</td>
<td>6</td>
<td>1,00</td>
<td>3</td>
<td>0,50</td>
</tr>
<tr>
<td>1.2 Antwortzeit</td>
<td>0,17</td>
<td>3</td>
<td>0,50</td>
<td>3</td>
<td>0,50</td>
<td>6</td>
<td>1,00</td>
</tr>
<tr>
<td>2 Kosten für Prio1-Anforderungen (einmalige und laufende externe Kosten für die nächsten fünf Jahre)</td>
<td>0,50</td>
<td>1</td>
<td>0,50</td>
<td>4</td>
<td>2,00</td>
<td>6</td>
<td>3,00</td>
</tr>
<tr>
<td>3 Referenzkunden (SAP R/3 als Backendsystem, Branche Maschinenbau, KMU/Konzern)</td>
<td>0,17</td>
<td>3</td>
<td>0,50</td>
<td>5</td>
<td>0,83</td>
<td>4</td>
<td>0,67</td>
</tr>
<tr>
<td>4 Datenhaltung im eigenen Unternehmen</td>
<td>0,00</td>
<td>6</td>
<td>0,00</td>
<td>4</td>
<td>0,00</td>
<td>6</td>
<td>0,00</td>
</tr>
<tr>
<td>Gesamtnutzwert</td>
<td>2,50</td>
<td>4,33</td>
<td>5,17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rang</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anhang Tabelle P: Nutzwertanalyse Stegherr
Literaturverzeichnis

[Eichhorn, 2005] Eichhorn, Peter: Das Prinzip Wirtschaftlichkeit: Basiswissen der
Betriebswirtschaftslehre, 3. Auflage. – Wiesbaden: Betriebswirtschaftlicher Verlag

Auflage. – Berlin; Heidelberg; New York: Springer-Verlag, 2002.

[Eyholzer, Kuhlmann, & Münger, 2002] Eyholzer, Kilian; Kuhlmann, Walter; Münger,
Thomas: Wirtschaftlichkeitsaspekte eines partnerschaftlichen
Lieferantenmanagements. In: HMD - Praxis der Wirtschaftsinformatik. Dezember

Schögel, Markus; Tomczak, Thorsten; Belz, Christian (Hrsg.): Roadmap to E-
Business: Wie Unternehmen das Internet erfolgreich nutzen, S. 190-208. – St.

Konzept der Organisationsgestaltung, 9. Auflage. – Wiesbaden:

[Gadatsch, 2005] Gadatsch, Andreas: IT-Controlling realisieren: Praxiswissen für IT-
Controller, CIOs und IT-Verantwortliche, 1. Auflage. – Wiesbaden: Friedr. Vieweg

http://www.pentaprise.de/cms_showpdf.php?pdfname=infoc_report,
[Stand 31/03/2008].

[Heinrich & Lehner, 2005] Heinrich, Lutz Jürgen; Lehner, Franz:

[Rode, 2002] Rode, Jörg: LZ ! NET: CPFR bringt Branche voran, 2002. – URL: http://www.lz-net.de/archiv/lznet/mylznet/pages/show.prl?params=keyword%3DCPFR%20bringt%20Branche%20voran%26all%3D1%26type%3D0%26where%3D0%26suchid%3D%26quelle%3D%26laufzeit%3D0&id=27153&curPage=1, [Stand 13/05/2008].

