
Leopold-Franzens

University of Innsbruck

Institute of

Computer Science

Research Group

Quality Engineering

Master Thesis

Adoption of

Decision Deferring Techniques

in Plan-driven Software Projects

A Controlled Experiment

Author

Bakk.techn. Michael Schier

Supervisor

Dr.Barbara Weber

April 21, 2008

“Planning is everything. Plans are nothing.”

Field Marshal Helmuth Graf von Moltke

Abstract

Today, a trend towards agile software development approaches can be observed

caused by shortened product lifecycles and the striving to optimize time to mar-

ket. As a consequence, traditional plan-driven approaches are more and more

forced to take a back seat in development processes producing products for

rapidly changing markets.

This thesis discusses the idea of deferring design decisions in plan-driven software

development approaches and advocates the adoption of techniques supporting

such concepts. At this, an experiment is conducted taking a journey as metaphor

for a software development project. The results of it essentially corroborate the

thesis that software projects can benefit from the use of design decision deferring

techniques. In addition to that, it fortifies the assumption that such techniques

reduce the amount of project plan adjustments in case of conflicts caused by

unforeseen events.

Acknowledgement

I would like to thank all people who have helped and inspired me in developing

the Alaska simulator and while writing this master thesis during the last seven

months.

First of all, I want to thank my supervisor Dr. Barbara Weber for her guid-

ance, her perpetual energy and enthusiasm. She and Werner Wild whom I

also want to thank provided Stefan and me with tons of inspirations and feature

requests, and gave us helpful feedback with regard to functionality and usability

of Alaska. Furthermore, Barbara spent much time on shaping this thesis and her

constructive reviews were crucial for finishing it on time.

Next, I want to thank Bakk. techn. Stefan Zugal for being a nice and studious

development partner throughout the whole implementation. Without being a

well-rehearsed team, conducting inspiring discussions and the existence of mutual

comprehension, we would not have been able to finish implementation that fast

and at such a high level of quality.

I am also grateful to Bakk. techn. Christian Haisjackl who acted as software

tester and provided us with helpful bug reports and feedback about Alaska’s

usability, and to Mag. (FH) Sandra Naschberger for proofreading this thesis.

Finally, I want to thank my parents for supporting me mentally as well as finan-

cially. Without their help, I would not have had the chance to study Computer

Science — thank you for giving me the freedom to live the life I wish to live!

Declaration of Authorship

I, Bakk. techn. Schier Michael, declare that this thesis and the work presented

in it are my own. I confirm that:

� This work was done wholly while in candidature for a research degree at

this University.

� No part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Date Signature (Schier Michael)

Contents

Abstract 5

Acknowledgement 7

Declaration of Authorship 9

1. Introduction 15

1.1. Background . 15

1.1.1. Plan-driven process models 16

1.1.2. Agile process models . 17

1.1.3. Historical evolution of software process models 18

1.2. Research Objectives . 20

1.3. Research Method . 22

1.4. Related Work . 23

1.5. Overview . 29

2. Concepts 31

2.1. The Software Development Project and the Project Plan 31

2.2. The Software Developer and the Customer 36

2.3. Use Cases . 38

2.3.1. Location . 40

2.3.2. Duration . 41

2.3.3. Business Value . 41

2.3.4. Reliability . 44

2.3.5. Availability . 44

2.3.6. States . 44

11

Contents

2.4. Project Specific Limiting Factors and Basic Conditions 45

2.5. Project Dynamics and Unforeseen Events 46

2.6. Techniques and Concepts for Deferring Design Decisions 47

2.7. Interplay of Concepts . 50

3. Architecture of Alaska 53

3.1. Plug-in composition . 53

3.1.1. Eclipse Rich Client Platform 54

3.1.2. Basic User Interface . 54

3.1.3. Eclipse Rich Client Platform User Interface 55

3.1.4. Graphical Editing Framework 56

3.1.5. XStream . 57

3.1.6. Alaska Help . 58

3.1.7. Alaska Core . 58

3.1.8. Alaska User Interface . 58

3.2. Three-layered Architecture . 59

3.2.1. Presentation Layer . 60

3.2.2. Business Logic Layer . 63

3.2.3. Persistency Layer . 69

4. Experiment 73

4.1. Basic Terminology . 73

4.1.1. Subjects . 74

4.1.2. Objects . 74

4.1.3. Independent Variables . 75

4.1.4. Response Variables . 75

4.1.5. Experimental Designs . 75

4.1.6. Hypotheses . 77

4.2. Experiment Design . 77

4.3. Experiment Execution . 81

4.4. Data Analysis Procedure . 82

4.4.1. Data Validation . 82

12

Contents

4.4.2. Data Analysis . 83

4.5. Experiment Results . 86

4.6. Risk Analysis and Mitigation . 91

4.6.1. Internal Validity . 92

4.6.2. External Validity . 93

4.7. Discussion . 94

5. Summary 97

A. Data of the Experiment 99

List of Figures 101

List of Tables 103

Bibliography 105

13

Chapter 1.

Introduction

1.1. Background

At the early beginnings of the computer era when a software development pro-

ject’s content was limited to small, well arranged requirements, hard tasks could

be only found in the field of programming. It was more important to create

correct and efficient programs than worrying about coordination matters. By the

time when the number of requirements rose, companies were forced to employ

more and more developers in order to master a system’s completion within a given

project time bound. This trend let other problems come to the fore. Suddenly,

project leaders were confronted with challenges like breaking down complex tasks

into smaller, meaningful steps without losing too much flexibility and at the same

time keeping the system maintainable as well as fulfilling certain security and

quality standards.

“To put it quite bluntly: as long as there were no machines, programming

was no problem at all; when we had a few weak computers, programming

became a mild problem, and now we have gigantic computers, programming

had become an equally gigantic problem. In this sense the electronic industry

has not solved a single problem, it has only created them. It has created the

problem of using its products.”

Edsger W. Dijkstra [Dij72]

These changes combined with the appearance of better and faster computers

at lower prices are the driving factors which stood behind the famous software

15

Chapter 1. Introduction

crisis in the mid 1960’s. The first time in history, the costs of developing software

exceeded those of producing hardware. Due to missing methodologies and tech-

niques to handle and coordinate big software projects, many of them ended up

in chaotic situations and failed accordingly. Developers began to realize this lack

of concepts which led to a huge problem-solving discussion and finally to the def-

inition of the term Software Engineering at the NATO-conference in Garmisch-

Partenkirchen in 1968 [NR86]. During the following years, besides improvements

in the field of implementation, people started thinking about how to get a grip

on coordination of software development in the large with a special focus on the

interplay of different project phases and reasonable delegation of working tasks

to single project members. Today, software development process models can be

roughly divided into two categories: plan-driven process models and agile

process models.

1.1.1. Plan-driven process models

In plan-driven process models, similar activities are combined to phases which

are executed sequentially. Results of these phases are documented which mo-

tivates the nomenclature of a document- or specification-driven process model.

The primary target is to follow the plan, stick to a sequential execution order

and avoid setbacks to previous phases where possible. Prominent representa-

tives of this approach are the Waterfall Model [Roy70] and the V-Model [Hes08].

The discovery of the fact that pure sequential models tend to be more and more

unrealistic to be carried out, motivated people with great project management

experience like Barry Boehm to define plan-driven process models supporting

iterations. As a prominent example, the Spiral model [Boe88] runs through

different project phases several times and produces within each iteration a pro-

totype which is refined this way up to an operational prototype. Further process

models favoring the idea of introducing cycles in the development process are

the Personal Software Process [Hum94], the Team Software Process [Hum99] as

well as the Rational Unified Process [JBR99]. The central idea behind all these

approaches is to specify the development plan and the software’s design upfront

16

1.1. Background

before starting the actual implementation. To conclude the observation of plan-

driven process models, it is important to notice that a strong focus lies on a

complete plan whereas in agile approaches, the project plan concretizes during

the whole project’s lifetime and is frequently subject of change.

1.1.2. Agile process models

Looking at agile software development methodologies, the interaction between

customer and contractor gains more importance. Due to their iterative develop-

ment procedure, customers can review the system in an earlier state and hence

can provide the developers with feedback more quickly. Because of shortened

development cycles, costs for requirements change and error correction can be

cut down. A common misconception when dealing with agile approaches is that

developers who are not familiar with the ideas behind them or who do not under-

stand the difference between deferring and skipping design decisions might put

it on one level with a chaotic approach where no planning takes place [Pry02].

Examples of this paradigm are eXtreme Programming [Bec00], Scrum [Sch04],

the Dynamic Systems Development Method [CV98] and Lean Software Develop-

ment [PP06]. Compared to their counterparts, agile methods try to tighten the

software development process and to increase flexibility.

Another difference is that agile methods are profit-oriented in the sense of

producing as much business value as fast as possible. The idea behind is that

the 80/20 principle which states that 20% of the business generates 80% of the

profits also applies to software products. In an agile project, the members try

to identify these 20% of functionality and aim to implement them first. The

resulting effect is that project constraints like quality, cost and time are obeyed

but the project’s scope is kept flexible which has positive implications on, for

instance, scenarios with tighter project deadlines [Bec00]. In such a case, the

impact of dropping remaining low-value feature requests on the system’s overall

business value is minimized in contrast to similar scenarios occurring in plan-

driven approaches. As opposed to that, plan-driven approaches fix their scope but

keep quality variable. The plan is created in such a way that the ordering of tasks

17

Chapter 1. Introduction

allows an efficient implementation but their business values are not taken into

consideration. This seems to be a reasonable procedure because no early releases

are intended from which the customer could benefit. Besides that, the estimation

of a feature’s business value would have to be done before implementation can

start which delivers a more imprecise estimation as in agile approaches where

later iterations allow a re-estimation of the expected business value. According

to Jim Highsmith, the typical agile developer essentially says:

“We will give you a plan based on what we know today; we will adapt the

plan to meet your most critical objective; we will adapt the project and our

plans as we both move forward and learn new information; we expect you

to understand what you are asking for - that flexibility to adapt to changing

business conditions and absolute conformance to original plans are incom-

patible objects.”

Jim Highsmith [Coh06]

1.1.3. Historical evolution of software process models

Figure 1.1 provides an overview of the emergence of software project method-

ologies in history. As mentioned earlier, the Waterfall Model and the V-Model

were the first approaches and are typical representatives of plan-driven methods.

In the mid-eighties, people became aware of the weakenings of such approaches,

which initiated the development of new, less rigid and more agile methodologies

like the Spiral Model [Boe88], which introduces iterations to the so far nearly

linear development process. During the 1990s, more and more people picked up

the agile idea, and popular lightweight approaches like Scrum, eXtreme Program-

ming and Crystal [Coc04] increasingly were applied to software projects. At the

same time, the ideas behind former plan-driven methods were improved and new

approaches appeared, like the V-Model 97 and the W-Model.

Today, the majority of software projects still make use of plan-driven ap-

proaches [dG06], but there is a cognizable trend towards agile methods. The

shortening of software development projects’ life-cycles caused by an increase of

market dynamics due to the globalization and other economic phenomena de-

grade the conditions for inflexible plan-driven approaches and force more and

18

1.1. Background

1960

1970

1980

1990

2000

2003: Rational Unified Process 2003
2005: V-Model XT

2006: Open Unified Process

1990: Scrum
1991: RAD

1993: W-Model
1996: XP

1998: Rational Unified Process 5.0

1997: V-Model 97

1998: Crystal

1987: Cleanroom software engineering

1988: Spiral Model

1979: V-Model

1970: Waterfall Model

1968: Software Crisis

Small projects / Simple approaches

1988: Stage-Gate Model

1997: Feature Driven Development

1975: Hermes

?

Figure 1.1.: History of software project methodologies

19

Chapter 1. Introduction

more companies to search for alternatives. This evolution is the main driving

force behind the present boom of agile methodologies which can be observed

today [Bar07].

1.2. Research Objectives

The goal of this thesis is to investigate how the plan-driven approach – com-

monly regarded as a rigid methodology – performs in environments character-

ized by unstable system requirements and dynamic project parameters. In such

an approach, fixed procedures are used to regulate changes and hierarchical or-

ganizational structures are means of establishing order. As a consequence, an

increase of control typically leads to an increase of order and occurring difficul-

ties are primarily solved by reductionist task breakdown and allocation. The

underlying assumption is that risk is adequately predictable to be managed by

complex, detailed upfront planning.

Besides risk as an important indicator value for software projects, the system’s

business value for the customer as a measure of success and the quantity of project

plan adaptations as a measure for dynamics inside the software project are of

great concern in this work. Business value is in this context not only meant to

be a measure for the amount of financial benefit from a software system, but also

includes positive effects on a company’s workflow, on the employee’s motivation

etc. [DK02]

We focus in this thesis on the plan-driven approach. Due to various software

development techniques, it is in this approach to some degree possible to defer

design decisions and to furnish planning with a certain amount of flexibility.

Surely, this cannot be compared to possibilities available when applying agile

methods but the important question to investigate in this context is whether

a sophisticated design can compensate financial losses caused by forced project

plan adaptations and whether resulting positive effects can be observed (see figure

1.2). These considerations immediately lead us to this thesis’ central research

topic:

20

1.2. Research Objectives

?

Business value

Flexibility

Deferral of design decisions

Project plan

adaptations

Figure 1.2.: Relationship between three important software project indicator values

We investigate the impact of the adoption of methodologies allowing the

deferral of design decisions on two project indicator values: business

value and project plan adaptation frequency.

In connection to that, we examine whether there are cognizable positive effects

going hand in hand with the use of such techniques in terms of business value

increase. Additionally, we analyze whether a decrease of forced project plan

adaptations (caused by unexpected events) can be observed.

In this thesis, the modern agile approach is not taken into consideration. Dif-

ferences between the agile and the plan-driven approach are discussed in further

detail in the thesis of Stefan Zugal [Zug08], who was extensively involved in the

development of a simulator software also used in this work. Zugal examines both

approaches and studies planning behavior, requirements change robustness and

effectiveness, whereas this thesis only focuses on the adoption of decision defer-

ring techniques in plan-driven software projects, i. e. how successful traditional

approaches are in comparison to such approaches enhanced with previously men-

tioned concepts.

21

Chapter 1. Introduction

1.3. Research Method

Literature about software experiments ([FP97], [Bro90], [KPP+02]) provides sev-

eral design guidelines for setting up an experiment. We make use of these and

conduct experiments of plan-driven approaches by utilizing a vacation trip as

metaphor for a software development project. The reason for doing so lies

in the multitude of parallels between both terms: In both cases, tasks with dif-

ferent characteristics await their execution, design decisions have to be made and

agility is in demand when it comes to unforeseen events (described in detail in

chapter 2). Based on this idea, our experiment evolves as follows (depicted in

figure 1.3):

Implementation

Creation of a travel simulator system

Experiment

Execution of simulated journeys by a set of test

persons.

Data Analysis

Separation into two clusters, evaluation of

experiment output and statistical analysis.

Conclusion

Discussion of experiment results

Figure 1.3.: Progression of the journey paradigm study

1. Implementation: A travel simulator is implemented which tries to offer

the user the most important aspects of a real journey. It is designed in such

a way that the user understands the program handling intuitively and can

fully concentrate on the main task: The stategic planning of a journey (see

chapter 3).

22

1.4. Related Work

2. Experiment: During the experiment, test persons develop travel plans

for two different scenarios and simulate their execution in order to evaluate

their project management skills. At this, every planning step is logged to

be available for later data analysis (see section 4.3).

3. Data Analysis: The collected results are split up into two clusters – one

cluster containing pure plan-driven journeys and the other journeys whose

test persons made use of decision deferring techniques (explained in more

detail in section 2.6). Subsequently, statistical analysis is conducted which

should optimally highlight relations between project indicator values, and

the results are prepared graphically (see section 4.4).

4. Conclusion: Based on the analyzed data, we draw conclusions about

the benefits of adopted decision deferring techniques and further examine

whether there are differences in the magnitudes of project plan adaptations

when comparing both approaches (see section 4.7).

1.4. Related Work

Many publications can be found in the field of planning software development

projects. Probably the most important representatives coming from the agile

universe are Kent Beck’s books of “The XP series” [Bec00], which start the dis-

cussion by underlining the interaction of four important project variables: cost,

time, quality and scope (see figure 1.4). As mentioned before, Beck points out

that both programmers and business people often are not aware of the potential

which lies in the effective management of software projects’ scope. He pleads

for a slimming of scope by reducing waste in the sense of unnecessary or value-

less functionality. The following citation underlines the positive effects of such

practices:

“You implement the customer’s most important requirements first, so if fur-

ther functionality has to be dropped it is less important than the functionality

that is already running in the system.”

Kent Beck [Bec00]

23

Chapter 1. Introduction

Quality

Resources

(cost, budget)

Schedule

(time)

Scope

(features, functionality)

Figure 1.4.: Software development from the perspective of a system of control variables

Furthermore, Beck illustrates how the cost of change behaves differently in soft-

ware projects using plan-driven and agile approaches respectively (figure 1.5). In

this connection, he highlights the positive implications with regard to a flat-

tened, non-exponential cost curve which accompany the techniques of iterative

planning and choice deferral. In order to give project members a concrete idea

C
o

s
t
o

f
C

h
a

n
g

e

Time

Traditional approach

eXtreme Programming

Figure 1.5.: Comparison of traditional and XP cost curve

of how to plan in an agile fashion, he defines the term Planning Game at which

the goal is to maximize the value of software produced by the team. Based on

this value, further indicators like cost of development and its risk are deduced.

24

1.4. Related Work

The provided strategy is to invest as little as possible to put the most valuable

functionality into production as soon as possible, but only in conjunction with

the programming and design strategies designed to reduce risk. According to

Beck, this can be done among other things by sorting of functionality by value

and risk in descending order. The developers then inform the customer about the

expected velocity in terms of ideal engineering time per calendar month which

assists him to choose the scope of functionality to be implemented within the

next iteration or release.

The second book in the XP series, “Planning eXtreme Programming” [BF00]

again by Kent Beck and Martin Fowler underlines the importance of planning and

deferred commitment (discussed in more detail in [MSWW03]) in XP projects

and the impact which working together with a customer and delivering features

incrementally have on agile planning behavior. The emphasis lies on the pro-

vision of hints for ordering features, how planning and status meetings shall be

organized, how visual graphs can be used to monitor project progress and how

bug tracking and fixing should be handled. A fact of special interest in connec-

tion with this thesis is that the authors also list planning a trip and car driving

as metaphors for software development and point out parallels.

Another interesting book dealing with agile methodologies is “Implementing

Lean Software Development” by Mary and Tom Poppendieck [PP06]. They see

development as a process of transforming ideas into products and identify two

schools of thought offering approaches to such transformations. The former is

the deterministic school of thought which starts by creating a complete product

definition and then creates a realization of that definition whereas the latter is

the empirical school of thought beginning with a high-level product concept and

subsequently establishing well-defined feedback loops that adjust activities so as

to create an optimal interpretation of the concept. Moreover, they believe that

development processes dealing with changing environments should be empirical

processes because such processes are the best way to adapt change. History

showed that especially software development processes feature a high potential

of unsteadiness and change which leads the Poppendiecks to the conclusion that

such processes should be understood best as empirical processes.

25

Chapter 1. Introduction

Similar to Beck, they endorse the idea of eliminating waste and try to im-

plement it by encouraging engineers to develop a deep understanding of what

customers value and a closely associated deep understanding of what the tech-

nology can deliver. Based on that, all steps done in processes should have a focus

on value-creating activities and should try to improve capability to deliver value

in so far as this is possible. With regard to the amount of produced code, this

means that features in a system have to be aggressively limited to only those

that are absolutely necessary to add value. Another positive side effect is that

the code base is kept small, simple and clean resulting in a decreased level of

complexity during later iterations which avoids that costs rise exponentially as

depicted in figure 1.6.

C
o

s
t
o

f
C

o
m

p
le

x
it
y

Time

Essential Features

C
om

pl
ex

ity

Figure 1.6.: The cost of complexity

Another important concept which is discussed in the book is the Deferred

Commitment, which tells developers to abandon the idea of a full specification

and to delay decisions as far as possible. This does not imply not to plan any tasks

in advance at all, but pleads for making decisions reversible where possible. It

also does not demand for complete flexibility but instead asks for the maintenance

of options at points where change is likely to occur.

Mike Cohn’s book “Agile Estimating and Planning” [Coh06] focuses on agile

approaches in general and starts with the clarification of the difference between

them and chaotic approaches. He explains the purpose of planning and what mis-

takes can be made in planning software projects. Mike Cohn outlines techniques

26

1.4. Related Work

for estimating needed time and effort, how to perform a meaningful prioritisa-

tion based on four factors - value, cost, new knowledge and risk - and fortifies his

argumentation with examples as well as popular theories coming from the prod-

uct development sector like the Kano Model [Kan84]. The core chapter deals

with scheduling and handling release planning - how velocity influences iteration

planning, which length iterations should have, why buffers are essential in the

presence of uncertainty and what things should be considered when planning for

multiple-team projects. The book closes with a case study, points out once more

the difference between conventional and agile planning techniques and provides

guidelines for efficient agile estimating and planning.

Tom deMarco points out in his book “Waltzing With Bears: Managing Risk on

Software Projects” [dL03] how managers often underestimate requirements and

doom projects with their too optimistic thinking and unrealistic expectations. In

this context, he explains the impact of risk on scheduling software projects and

underlines the importance of buffers and flexibility justified by the difficulty of

risk management (“Risk management is project management for adults”).

Another book [deM86] by the same author focuses on the importance of the

adoption of good estimation techniques to calculate a software project’s effort as

exact as possible. Based on this, deMarco further explains how to do cost and

time planning to countervail deadline exceeding and support precocious detection

of errors.

Yet another interesting book is “Balancing Agility and Discipline - A Guide

for the Perplexed” by Barry W. Boehm and Richard Turner [BT03]. The authors

examine the aspects of agile and plan-driven methods and provide an approach

to balancing by examples and case studies. They are convinced that best devel-

opment strategies combine attributes of both ways of thinking and provide with

their work a practical guidance for software developers. Furthermore, Boehm

and Turner suggest not to adapt existing processes to a project but instead to

build a new process from existing approaches, tailored for the target project.

“Agility and discipline: These apparently opposite attributes are, in fact,

complementary values in software development. Plan-driven developers

must also be agile; nimble developers must also be disciplined. The key

27

Chapter 1. Introduction

to success is finding the right balance between the two, which will vary from

project to project according to the circumstances and risks involved. De-

velopers, pulled toward opposite ends by impassioned arguments, ultimately

must learn how to give each value its due in their particular situations.”

Barry W. Boehm, Richard Turner [BT03]

In “Managing the Software Process” [Hum89], Watts Humphrey points out

the importance of a sophisticated project plan and discusses important topics

like size’s measurement, how estimations can be implemented, how to identify

productivity factors and how task scheduling can be conducted. Furthermore,

he compares different planning models and suggests how to track projects best.

The theory and practice of current measurement techniques and their problems

are described in Capers Jones’ book “Applied Software Measurement” [Jon91].

The procedure of collecting “function-point metrics”, the metric that will prob-

ably replace lines of code as the standard measure of program size, is discussed

as well. An interesting fact is that Jones integrates a huge amount of quality

and productivity data and analyzes it in several chapters to substantiate his

argumentation.

In their book “Applied Software Project Management” [SG05],Andrew Stell-

man and Jennifer Greene write about the concepts behind the creation-process of

a project plan. They favour the plan-driven approach and argue that it is crucial

to have knowledge about the project’s scope up-front. In addition to that, they

point out the importance of maintaining a risk plan to manage a project’s plan

with respect to the definition of buffer times and exception handling. Stellman

and Greene see the project manager as central coordiating individual and also

discuss issues in connection with a possible lack of leadership but surprisingly do

not mention the present trend of delegating responsibility to team members.

“When the project begins, the project manager has a unique role to play.

The start of the project is the time when the scope of the project is defined;

only the project manager is equipped to make sure that it’s defined properly.

Everyone else has to play a role later on. . . ”

Andrew Stellman, Jennifer Greene [SG05]

28

1.5. Overview

Similar to Stellman and Greene, Pankaj Jalote summarizes the most important

concepts of plan-driven project management in his book “Software Project Man-

agement in Practice” [Jal02]. He discusses several effort estimation approaches

and divides the scheduling process in an overall part defining the rough contents

and a detailed part further refining the project plan. Besides other topics like

quality planning, he puts a focus on risk management and explains assessment

techniques for identification and prioritisation of potential risks. Based on this

information, Jalote pleads for controlling techniques to monitor and track identi-

fied risks. Another major topic in his book is Requirements Change Management.

At this, Jalote enumerates several mechanisms that are crucial when facing sud-

den requirements changes, which are: the estimation of the effort needed for the

change requests, the reestimation of the delivery schedule, the performance of a

cumulative cost impact analysis, etc.

1.5. Overview

The remainder of this thesis is structured as follows:

Chapter 2 describes the fundamental concepts of a software development pro-

ject and the journey metaphor used in the experiment. At this, it highlights

parallels between them and tries to explain the legitimacy of the chosen metaphor.

Chapter 3 explains important concepts of the travel simulator’s architecture,

lists used technology and frameworks and points out the composition of plug-ins

Alaska consists of.

In chapter 4, the controlled experiment conducted in connection with this

thesis research question is described. First, the explanation of basic terminology

with regard to software experiments is given. Next, the experiment’s design is

demonstated, before describing its actual execution. The core of chapter 4 is the

data analysis phase as well as the discussion of obtained results. It is concluded

by identifying risks which threaten the experiment’s validity and lists procedures

to mitigate them.

29

Chapter 2.

Concepts

This chapter explains the core concepts of a software development project and

points out connections to potential counterparts in a travel scenario. A detailed

and compact summary of parallels can be found in table 2.1 on page 50. In section

2.1, we explain the terms software development project and project plan followed

by existing roles in such a project (section 2.2). Next, use cases are discussed in

section 2.3 and subsequently, basic conditions and limiting factors in section 2.4

as well as project dynamics in connection with unforeseen events are explained

(section 2.5). Finally, we list techniques and concepts for the deferral of design

decisions in section 2.6 and conclude the chapter with a comparison of concepts

in a software development project and a journey (section 2.7).

2.1. The Software Development Project and the Project

Plan

Software project

A software development project is always shaped by the customer’s demands and

visions with respect to the system’s functionality. What the project’s devolution

will look like and how the interaction with the customer will emerge strongly

depends on the chosen software development method. Popular examples are the

Waterfall Model [Roy70], the Spiral Model [Boe88], the Unified Process [JBR99],

the V-Model [Hes08] as well as eXtreme Programming [Bec00] and Scrum [Sch04].

As a typical representative of a plan-driven, linear, non-iterative software devel-

31

Chapter 2. Concepts

Requirements analysis and specification

System design and specification

System implementation

Integration and system testing

Delivery, deployment and maintenance

Figure 2.1.: Consecutive phases in the waterfall model

opment model, we use the Waterfall approach (figure 2.1). A specific feature

of this approach is the fact that a project can be separated into several phases,

which have their outputs strictly defined. At this, the output of one phase is

the input of its succeeding phase. This characteristic makes the model’s name

obvious.

Beginning with the requirements analysis and specification phase, the

customer creates a document which describes as exact as possible the function-

ality which the system has to provide. Based on this information, the contractor

composes a second document, the requirements specification, which describes the

system’s functionality from the contractor’s point of view. In this connection,

the required functionality is divided into use cases (see section 2.3 on page 38)

defining the interactions between an external actor and the system under consid-

eration to accomplish a goal. In both documents, the system is seen as a black

box and consequently, only questions dealing with what is needed are of concern.

How features are finally implemented is constituted in more detail during the

system design and specification phase. The resulting system specification is

32

2.1. The Software Development Project and the Project Plan

a refinement of the requirements specification and contains detailed information

about their demanded behavior, besides single methods and their signatures.

Hereby, the behavioral description is often formulated using natural language

and has to be as precise as possible to avoid the emergence of questions during

the succeeding implementation phase.

This period of a software development project appears to be the most cost

intensive one. As a result, it is critical for a project’s success to have the pre-

ceding phases successfully completed. Now making a step backwards forced by

inconsistencies found in the specification may for example render several other

already implemented features unnecessary which inevitably results in a tremen-

dous financial loss.

In order to countervail arising implementation errors and possible misinter-

pretations of the specification document, all specified methods of the software

project as well as test cases defined in the requirements specification are run

against the system. It has to be emphasized that these tasks executed during

the integration and system testing phase do not lead to a complete proof

of the correctness of the program but only test a certain set of key functionality

and try to get a high amount of code coverage.

After satisfyingly completing this phase, the system is delivered to the cus-

tomer and installed on his hardware during the delivery, deployment and

maintenance phase. After successfully integrating the system into the IT

landscape of the customer, training courses for client-side employees are often

performed to get them into touch with the novel software. Important challenge

is the one of providing support in case of errors. Often, not all faults can be

detected during the verification phase and may occur at run time. The removal

of such software flaws can take diverse forms. In the best case, the customer can

get rid of the error by himself by modifying documented parameter values. If it

comes to the pinch, the system cannot be repaired on site and has to be revised

by a return to antecedent project phases which again results in high costs for the

development company and/or the customer depending on their contract.

The careful reader might have become aware of the fact that such a strict linear

software development model holds a high potential of risk. The idea of perfectly

33

Chapter 2. Concepts

completing one phase before going to the next one turned out to be an illusion

[McC04]. An example of a scenario where such an approach causes severe prob-

lems is the customer’s uncertainty about his conception of the required system.

Too often, it happens that it needs a prototype to help the customer sketching

what is demanded. Without that help, mismatches between the customer’s and

the developer’s view on the system will be detected during later phases which

again results in higher costs. Another imaginable situation is that while specify-

ing the system, the developers are not aware of its complexity and this problem

is not discovered until the implementation phase. Again, an expensive step back-

wards is needed. David Parnas describes the problems of such inflexible processes

in his article [PC86] quite well:

“Many of the (system’s) details only become known to us as we progress in

the (system’s) implementation. Some of the things that we learn invalidate

our design and we must backtrack.”

David Parnas

These and other troubles have led to the development of a whole set of modified

waterfall models where most of them are covered in McConnells book [McC96].

Journey metaphor

As metaphor for a software development project, a journey is used. The main

purpose of a voyage typically is the maximization of fun and travel experience.

In connection with that, also some constraints and restrictions have to be taken

into consideration like being on time for the return flight or staying within the

travel budget. In a similar way, targets and constraints can be set up in a soft-

ware project like implementation of the core functionality, reaching a certain

level of usability, keeping expenses below a given bound or meeting the project’s

deadline. Additionally, other parallels can be pointed out like the money avail-

able for a software project and the size of the traveler’s budget as well as the

implementation of use cases and the execution of touristy actions.

A journey can as well be divided into several phases where the pre-planning

phase is the first one of those. During this phase, the traveler tries to identify

several activities of special interest and tries to create a plan involving such tasks

34

2.1. The Software Development Project and the Project Plan

as well as other necessities like accommodations and car drives. A reasonable

travel plan can only be created when several action specifics as well as global

parameters (e. g. time, budget, constraints) are taken into account. After its

successful compilation, bookings can be made before the pre-planning phase ends

and the actual journey starts.

During the traveling phase, unforeseen events (e. g. road closure, civil war,

discovery of new attractions) might occur, which may reduce the journey’s ex-

pected outcome or even make the travel plan’s execution impossible. Analogously

to this, in a software development project such happenings can be a sudden cus-

tomer requirements change, the detection of an underestimation made in some

previous phase or the loss of key developers during the implementation phase. As

previously described, such events demand countermeasures which may force the

developers to step back to an earlier phase and for example adapt the system’s

specification. In the case of the journey, the invalid travel plan forces the traveler

to interrupt the voyage and step back to the planning phase to modify it. This

may comprise postponing actions, skipping non-available actions or inserting new

actions. Once the schedule fits the traveler’s needs, he can proceed again to the

traveling phase and continue the journey to visit sights, go from one place to

another or perform diverse activities.

Finally, the traveler finishes his journey and returns home – this is when the

postproduction phase begins. In the context of a journey, pending bills are

paid, holiday photographs are printed and a balance is drawn. Based on that

material, the journey’s success can be estimated.

All these parallels motivate the establishment of a three-phase mapping be-

tween journey stages and software project phases as depicted in figure 2.2. In

the first phase which we call planning phase, the traveler performs all planning

tasks needed before and during its journey. In the succeeding execution phase,

actions, which are not asociated with planning tasks, are being executed. A mod-

ification of the travel plan can only be done by stepping back to the planning

phase whereas the finalization of the journey leads to the final postproduction

phase. Analogous to this, requirements are analyzed and specified as well as the

system’s design is being worked out in a software project during the planning

35

Chapter 2. Concepts

Pre-Planning

On-the-fly planning

Traveling Return home

Modify journey plan

Continue journey

Requirements analysis

and -specification

System design

and -specification

System implementation

Integration and system

testing

Delivery, deployment

and maintenance

Start journey Finish journey

Planning phase Postproduction phaseExecution phase

Figure 2.2.: Comparison of phases in waterfall model and journey metaphor

phase. The following execution phase comprises the implementation of the

software and its test. At last, the system is delivered, installed and maintained

during the postproduction phase.

2.2. The Software Developer and the Customer

Software project

The customer works out the requirements specification and defines the content

of the project together with the lead developer and/or the project leader. The

actual implementation work is done by the software development team whereas

the detection of problems in the specification and the occurrence of requirements

changes have to be handled by both parties.

Journey metaphor

In the journey metaphor, as depicted in figure 2.3, a traveler preferring to plan

his trip on his own is the projected model for both - the client and the project

manager. He knows his personal preferences and perceptions of a nice journey

36

2.2. The Software Developer and the Customer

Customer

Project leader / developers

analyze and specify requirements

implement and test system

react on specification errors and changes
Traveler

get aware of journey target and expectations

define travel plan

reorder or adapt travel plan

travel / do actions

<<mapping>>

Software development project Journey paradigm

<<mapping>>

Figure 2.3.: Two on one role mappings between software development project and journey
metaphor

Customer

Project leader / developers

analyze and specify requirements

implement and test system

react on specification errors and changes
Traveler

get aware of journey target and expectations

define travel plan

reorder or adapt travel plan

travel / do actions

<<mapping>>

Software development project Journey paradigm

Travel agency / local tour operators

<<mapping>>

Figure 2.4.: Two on two role mappings between software development project and journey
metaphor

perfectly well and can start planning based on this knowledge. This allows us

to exclude potential mismatches between customer and developer which happen

frequently in real software projects. Also pending reactions on changed param-

eters and unforeseen events can be solely decided by the traveler whereas in the

software project scenario an agreement between both parties is crucial. Thus,

the traveler can be seen as the union of both roles from the software development

world. In contrast to that stands the second possibility of role mapping visual-

ized in figure 2.4 where the travel agency and/or local tour operators as second

party come into play. They assist the traveler in the definition of his travel plan

and can help him react on unforeseen events during the voyage.

37

Chapter 2. Concepts

2.3. Use Cases

Software project

A use case [ABCP02] in a software development project describes the system’s

behavior as response to an actor’s interaction with it. Actors can be human users

as well as other software systems. A use case is often formulated as sequence of

single steps between the system and the actor from the point of view of the latter.

According to Bittner and Spence, “Use cases, stated simply, allow description of

sequences of events that, taken together, lead to a system doing something useful”

[BS02]. Use cases are characterized by a set of information, among which the

name, the description, participating actors, the status, triggers and preconditions

as well as post conditions are the most important ones. Besides that, other

indicator values can be assigned to a use case which often cannot be determined

or estimated in the design phase and become known not until its implementation

being finished. Examples are a use case’s duration, its complexity and its risk

with regard to imprecise specification, to insufficient domain knowledge and to

inexperience within a technology in need.

Figure 2.5 is a simplified state diagram of a use case’s life cycle. A feature

described by a use case is requested by the customer before it is analyzed by

the project team. When its implementation is expected to be too costly or im-

possible, the feature request is declined. Otherwise, it is accepted and inserted

into the project plan. In a next step, the feature is implemented by the software

developers and gets tested in a succeeding phase. When conceptual errors are

detected during implementation, the feature’s specification has to be reconsid-

ered. After finishing the test phase, the feature gets either deployed or detected

errors have to be removed first. After the feature’s delivery, still errors may occur

which take the feature back to the analysis phase depending on the existence of

a support contract and the defects’ seriousness.

Journey metaphor

When again considering the journey metaphor, use cases are being modeled as

actions which are separated into accommodations, activities and routes.

38

2.3. Use Cases

TESTED

REQUESTED

IMPLEMENTED
DECLINED

ABORTED

DELIVERED

DEPLOYED

ANALYZED SCHEDULEDpending accept

conceptual

errors detected

errors detected /

customer unhappyness

success

customer wish

testing

implementing

Implementation

errors detected

Figure 2.5.: Possible states of a software use case

Routes are indispensable when wanting to move from one location to another

which is a reflection of core features in the development progress needed for

example to satisfy the preconditions of succeeding use cases. Accommodations

as well as activities are bound to specific locations and can only be performed

when the traveler currently stays there. They are complementary in terms of

execution time: Accommodations can only be visited at the end of a day to

spend the night there whereas activities are intended to be carried out during a

day.

Figure 2.6 illustrates the mapping of use cases onto a journey’s actions. A bank

customer wants a cash machine to provide several services like the withdrawal and

deposit of money as well as freezing a credit card in case of theft. Such services

are described in the requirements specification which the software developer has

to implement. In the journey metaphor, the role of the developer is taken by

the traveler who also has to accomplish several tasks. The observation can be

concluded by stating that there exists both a mapping of roles and a mapping of

tasks (use cases onto actions).

Actions can be characterized similar to use cases by several metrics. Consid-

ering our travel simulation, we tried to identify fundamental properties of travel

actions and included support for the following characteristics into it.

39

Chapter 2. Concepts

software developer

traveler

bank customer

hiking

hunting bears

going camping

withdraw money

deposit money

freeze credit card

<<implements>>

<<implements>>

<<implements>>

<<mapping>>

<<mapping>>

Software development project

Journey paradigm

<<executes>>

<<executes>>

<<executes>>

Figure 2.6.: Mapping of use cases onto actions in a journey

2.3.1. Location

An action is always bound to one location and can only be executed when the

traveler currently stays there. Routes are a special case of actions and connect

two locations. They can be taken in both directions i. e. they can be executed in

both locations. Figure 2.7 illustrates an exemplary composition of actions and

locations.

Cost

Each action is associated with a price which the traveler has to pay to be able

to execute it. Furthermore, an action can be booked in advance to guarantee its

availability at execution time. The booking process is also reversible supporting

cancelation of bookings for which cancelation fees are charged. The magnitude

of the cancelation fees is time dependend.

40

2.3. Use Cases

Actions

Accommodation 1

Activy 2

Activity 3

Route 4

Activity n-1

Route n

.

.

.

Locations

Location 1

Location 2

Location m

Location m-1

Location 3

Location 4

Figure 2.7.: Showcase of a a set of actions associated with locations

2.3.2. Duration

An action has either an exact duration or a duration range. This means that

when the traveler wants to know an action’s duration in advance, he may only

get information about a time interval in which the actual duration will lie. This

value is calculated randomly from a symmetric Triangular distribution. The

main reason here for not taking a Normal distributed random value is that it

is unbounded whereas the Triangular distribution is bounded to an intervall

[a; b]. Figure 2.8 shows the symmetric Triangular distribution from which random

values are drawn to determine the duration of an action with given duration range

[60; 120].

2.3.3. Business Value

An action’s business value depends on two parameters: Its local certainty and the

global weather influence. For each action, its maximum business value BVmax is

known. The calculation of the actual business value BV is done as follows:

BV =

(

randloc +

(

wn −
1

2

)

· winf

)

·BVmax (2.1)

At this, randloc is a random value drawn from a bounded distribution (Beta

distribution, Triangular distribution, Uniform distribution, etc.) specifically de-

41

Chapter 2. Concepts

fined for the action. It is bounded to the range [0;1]. wn ∈ [0; 1] is the local

weather value at day n and winf ∈ [0; 1] the weather influence factor regulat-

ing the impact of the local weather on the action’s business value. A location’s

current weather depends on the local weather characteristics given by weather

tendency tw ∈ [−1; 1] and stability sw ∈ [0; 1]. At this, sw defines the variance

of the weather’s fluctuation whereas tw indicates whether these fluctuations are

positively or negatively oriented i. e. have a positive or negative impact on the

business value. The weather for a certain day is calculated based on this informa-

tion and the previous day’s weather. Fluctuations of the weather are simulated

by random values drawn from the weather fluctuation distribution ψ. Formuli

2.2 to 2.4 explain how the weather in the simulation is calculated and figure

2.9 illustrates an exemplary devolution of the weather at a certain location. In

this graph, a higher stability would reduce the size of fluctuations and a higher

tendency would shift weather values up.

f∆(x|a, b, c) =















2(x−a)
(b−a)(c−a) for a ≤ x ≤ c

2(b−x)
(b−a)(b−c) for c ≤ x ≤ b

0 for any other case

∈ [0; 1] (2.2)

ψ(x) =















f∆

(

x
∣

∣

∣

sw

2 ,
1
2 ,

1+(1+tw)(1−sw)
2

)

for − 1 ≤ tw ≤ 0

f∆

(

x
∣

∣

∣

1−(1−tw)(1−sw)
2 , 1

2 ,
2−sw

2

)

for 0 ≤ tw ≤ 1

0 for any other case

(2.3)

wn =

















tw+1
2 · sw + µψ · (1 − sw) if n = 0

wn−1 + 2 · randψ − 1 if n > 0

undefined else







1

0

(2.4)

The business value is a measure for the travelers contentedness after the ac-

tion’s execution. This means that the more fun and satisfaction he has, the

higher this value is. The sum of all gained business values is the score of the

whole journey and reflects its overall success.

42

2.3. Use Cases

duration in minutes
60 70 80 90 100 110 120

cu
m
ul
at
iv
e
di
st
ri
bu

tio
n

0,0

0,2

0,4

0,6

0,8

1,0

Figure 2.8.: Cumulative distribution function of the symmetric Triangular distribution

bad

good

Figure 2.9.: Devolution of a location’s weather with parameters tw = 0.2 and sw = 0.6

43

Chapter 2. Concepts

2.3.4. Reliability

The reliability rBV ∈ [0; 1] of an action provides information about how sure the

estimated expected business value BVexp ∈ [0;BVmax] will be reached. It is di-

rectly connected to the overall distribution’s standard deviation and is calculated

independently from BVexp as follows:

rBV = [1 − 2 · σloc − (1 − sw) · (1 − |tw|) · |winf |]
1
0 (2.5)

BVexp =

(

[

µloc +

(

wexp −
1

2

)

· winf

]1

0

)

·BVmax (2.6)

wexp =
tw + 1

2
· sw + µψ · (1 − sw) (2.7)

Again, tw and sw define the local weather’s characteristics. µloc and σloc are the

action distribution’s mean value and standard deviation, winf the influence of

the weather on the action, wexp the expected weather and µψ the mean value of

the weather fluctuation distribution.

2.3.5. Availability

Another important value is the action’s availability a ∈ [0; 1]. It is especially

important in case of unbooked actions. If an action has no booking for its day

of execution, there is only a chance of 100 · a% that it is executable.

2.3.6. States

For actions, as depicted in figure 2.10, seven different states are defined. In

the initial state NEW, an action is taken into account for execution but is not

yet scheduled. The scheduling of it results in the state PLANNED from which it

can reach the state BOOKED by booking the action before the booking deadline.

Another possible successor state is CANCELED where the traveler drops the action

from his plan without performing it. A third alternative is moving to state

STARTED from which the two final states can be reached: DONE in case of success

and FAILED otherwise. In all states except the initial state, the starting time is

44

2.4. Project Specific Limiting Factors and Basic Conditions

STARTED

NEW

CANCELED

FAILED

DONE

PLANNED BOOKEDschedule
create booking

begin

failure

success

remove from plan

take into account
cancel booking

begin

remove without booking cancelation

Figure 2.10.: Possible states of a travel action

known and can be used for reservations and weather forecasts. The execution

of an action begins with entering the STARTED state and finishes in one of the

succeeding final states. In both cases, important values like gained business value,

duration and expenses are available from that point on.

2.4. Project Specific Limiting Factors and Basic

Conditions

Software project

In a software development project, elementary resources like time, man power

and money are limited. In addition to that, further rules and diverse constraints

have to be considered. It might for example happen that two use cases describe

two different user interaction scenarios which provide equivalent functionality.

At some point in time in the project devolution, a decision has to be made about

taking exactly one of these two possibilities and dropping the other one. Another

potential constraint would be the implementation of one use case as precondition

for a succeeding one.

45

Chapter 2. Concepts

Journey metaphor

Such restrictions can also be found in the journey metaphor at many places: Ev-

ery day lasts for a fixed amount of minutes and has to have an accommodation at

its end. Actions are bound to locations and can only be executed when the trav-

eler currently stays there, owns enough money to pay for it and still has enough

time available before going to the hotel. Other constraints can establish relations

between actions like mutually excluding each other, demanding for coexistence

of two actions or taking the execution of an action as prerequisite for the follow-

ing one. It might also happen that the visit of certain sights is mandatory or a

maximum number of executions of a single action must not be exceeded.

Basically, we distinguish between execution constraints and termination con-

straints. Execution constraints have to be satisfied to enable the developer to

implement the feature / to allow the traveler to execute the action targeted by

the constraint. Termination constraints on the other hand must be fulfilled in

order to complete the iteration or release / finish the journey.

2.5. Project Dynamics and Unforeseen Events

Software project

Especially in domains with little a priori knowledge about the range of required

functionality and in areas where customer demands behave unstable, a huge

amount of dynamics with regard to the requirements specification can be ex-

pected. These sudden changes on global project parameters like budget, time-

frame and quality and the occurrence of unforeseen events force the project de-

velopment team to frequently modify and adapt the development plan. Such

events might be upcoming feature requests, changes on pending or already im-

plemented features like functionality adaption and modification of their risk es-

timations and compensation operations of failed feature implementations caused

by underestimated risk or lately detected conceptual mismatches. It is obvious

that particularly in such domains, deferred planning behavior or even agile plan-

ning approaches are beneficial. The more changes are expected and the more

46

2.6. Techniques and Concepts for Deferring Design Decisions

thorough the planning has been done, the more time and money the adaptation

process will take. With many decisions as long delayed as possible, the amount

of needed modifications on the project plan can be significantly reduced [PP06].

Journey metaphor

It is easy to imagine that in a journey similar scenarios might happen. Con-

sidering a voyage of a personality who prefers to know perfectly well what he

can expect to get, the travel plan will consequently be worked out in detail. As

pointed out before in conjunction with a software development project, unfore-

seen events might happen. Imagine furthermore that a road closure happens

prohibiting the traveler to reach the next destination in his plan. He is now

forced to modify it in a way that he can continue his journey without losing too

much time and money. In such a scenario, this might emerge as a hard task if for

example succeeding actions have already been booked and cannot be canceled

without causing high costs. Another feasible event is that after arriving at a

certain location, the traveler gains knowledge about a special attraction which

turns out to be very appealing to him. Unfortunately, his meticulous travel plan

does not allow him to stay at this location any longer and refuses him to benefit

from this opportunity. Otherwise, it would be quite devastating for his budget

to force a visit of this attraction because of the resulting cancelations of several

other planned tasks. Again, the observation may be made that the more tasks

are planned and/or booked in advance, the less flexible the traveler can react

to unforeseen changes and the more these changes influence the journey budget

negatively.

2.6. Techniques and Concepts for Deferring Design

Decisions

In order to countervail a high number of changes to the travel plan and to com-

pensate unforeseen events, the traveler is given the opportunity to plan whole

packages with predefined time and location bounds instead of single actions.

These packages have the advantage that the decision about their content can be

47

Chapter 2. Concepts

Sequence 1 – „Action Trip“

Sequence 2 – „City Sightseeing“

Sequence 3 – „From the air“

split join

Mountain

climbing

Historic

museum

Extreme

downhill

biking

Whitewater

rafting

Gothic

cathedral

Palais

Royale

Medieval

citadel

Sightseeing

flight
Paragliding

Figure 2.11.: Tour packages using late binding technique

deferred. A typical example would be a whole-day package at a certain location

where the traveler can decide at the day of the visit whether he chooses the

indoor or the outdoor program at which the content of both programs is fixed.

This type of package can be compared to some degree with the concept of late

binding (figure 2.11) in object oriented systems. During design time, the devel-

oper subclasses existing classes and overrides some methods to adapt behavior.

When working with variables having the type of the superclass, the compiler is

not able to correctly decide at compile time which implementation to take when

invoking an overridden method. This decision is deferred to runtime where the

environment executing the application has more information about the content

of the variable and can therefore choose the implementation accordingly [CT06],

[Str00].

The other kind of package provided in the journey metaphor behaves in a simi-

lar way by also deferring the design decision but it handles the content definition

differently. With this package, the traveler can configure the content freely by

choosing actions from a fixed set. Obviously, this version gives the traveler more

48

2.6. Techniques and Concepts for Deferring Design Decisions

Available content

Modeled content

Mountain

climbing

Historic

museum

Extreme

downhill

biking

Whitewater

rafting

Gothic

cathedral

Palais

Royale

Medieval

citadel
Paragliding

Palais

Royale

Historic

museum
Paragliding

Figure 2.12.: Tour packages using late modeling technique

opportunities but on the other hand also more responsibility - he now has to

check by himself whether the planned tasks are feasible with regard to parame-

ters like cost, time and availability. A quite similar design concept can be also

found in the context of workflow management systems where this technique is

called late modeling (figure 2.12) [HHJHS97].

In the development of software systems, similar concepts of deferring design de-

cisions can be found. A quite popular technique is used by the eclipse community

[FB07] which is called “API first” [dR05]. The idea behind it is to first make

an agreement on a common interface which suits the requirements as good as

possible. The actual implementation of the underlying functionality is typically

deferred to later phases. The advantages of such a proceeding are that decisions

about implementation details can be shifted chronologically which increases flex-

ibility and that other parties can already make use of the provided interface.

This fact also motivates the demand on the API to be as stable as possible and

asks for special procedures when interface changes are indispensable.

Another parallel where design decisions are being deferred is called “Infor-

mation Hiding” [Par71]. Roughly speaking, it deals with the encapsulation of

information in modules, classes etc. to avoid that functionality using these units

49

Chapter 2. Concepts

gets in touch with implementation details and internal data. This technique not

only simplifies the use of modules but also makes it easier for the module main-

tainer to modify internals at a later point in the project without having to worry

that the module’s users have to adapt their code accordingly.

2.7. Interplay of Concepts

Table 2.1 sums up all discussed concepts of software development projects and

lists their counterparts in the journey metaphor. How these elements are con-

nected in our perception of a journey is depicted in the class diagram of figure

2.13. The central element is the Journey, which has a name, a traveler, a state

and holds global parameters like the booking duration as well as the time available

for traveling. Further attributes are the start Location, the current Location

and the current time. Besides that, the Journey knows about Constraints

which have to be obeyed and Events which might occur. Finally, it contains all

Locations available in the simulation.

Software development project Journey

Project plan Travel plan
Software developer and customer Traveler
Basic constraints, limiting factors Location, budget, time, other constraints
Sudden change of requirements Occurrence of unforeseen events, weather
Project time frame Duration of vacation
Project budget Financial situation of traveler
Use cases(key features, non-critical ones) Actions(routes, accommodations, activities)
Requirements and Design phase Planning the journey at home
Start of the implementation phase Start of the journey
Practices for deferring design decisions Tour packages
Business value of implemented use case Positive experience of done activity
Imprecise specification, unrealistic estimates Uncertainty of an action’s cost and duration
Estimation of use case risk Estimation of a non-booked action’s availability
Cost of canceling a feature’s implementation Cancellation fee of a booking

Table 2.1.: Comparison of elements in a software project and a journey

A Location is characterized by a name, its coordinates and parameters defin-

ing the local weather conditions. Each Location has some PlanItems. A

PlanItem is a generic type for packages (Boxes) and Actions. PlanItems can be

members of the JourneyPlan and have similar to the Journey a state as well as a

50

2.7. Interplay of Concepts

 



























































 























































 


















































Figure 2.13.: Business class diagram of a journey

51

Chapter 2. Concepts

name, a description and a start time. Boxes last for a certain duration and have

predefined start and end Locations. Furthermore, their starting time on a day is

also fixed. Boxes are divided into LateBindingBoxes and LateModelingBoxes.

The former contain several PlanItemSequences among which the traveler can

choose from and the later contain a set of PlanItems which the traveler can use

to flexibly build a specific PlanItemSequence. Actions are characterized by a

business value, the certainty about the business value, the Action’s cost, its du-

ration, its availability, the number of days before which a booking can be made

as well as the cancelation fees. They again can be categorized into Activities,

Accommodations and Routes.

52

Chapter 3.

Architecture of Alaska

Alaska is a journey simulator which is used in the experiment described in chap-

ter 4. The development was done using Sun’s Java 1.6 [Ull07] and making use

of the Eclipse RCP framework [DFK+04]. As a consequence, the entire Alaska

application builds on top of Eclipse plug-ins, as described in section 3.1. The

composition of plug-ins reflects the system’s layered architecture, which is dis-

cussed in great detail in section 3.2.

3.1. Plug-in composition

One of Eclipse’s key concepts is its plug-in architecture in which basic units are

modeled as plug-ins. This technique eases the addition of new features – they

can be integrated by extending existing plug-ins or creating entirely new plug-ins.

The resulting relativly low technology risk is one of the main reasons why Alaska

was developed following this strategy. As depicted in figure 3.1, the toplevel

plug-in is alaska.ui, which depends on alaska.core, alaska.help as well as

the Graphical Editing Framework [MDG+04]. Below, XStream1 as a persistency

plug-in and the actual Eclipse RCP components are of relevance. All plug-ins

prefixed with alaska. have been developed especially for the Alaska simulator.

1http://xstream.codehaus.org

53

Chapter 3. Architecture of Alaska

B
a
s

ic
 U

I

E
c
li

p
s

e

R
C

P
 U

I

E
c

li
p

s
e

R
C

P

SWT
org.eclipse.swt

Equinox Framework
org.eclipse.equinox.*

Platform Runtime
org.eclipse.core.*

Workbench UI (Editors, Views, Perspectives)

org.eclipse.ui.workbench

Graphical Editing Framework
org.eclipse.gef

Draw2d
org.eclipse.draw2d

Open Services Gateway initiative
org.eclipse.osgi

Alaska Core
alaska.core

Eclipse User Interface
org.eclipse.ui

JFace
org.eclipse.jface

Eclipse Help
org.eclipse.help

Alaska UI
alaska.ui

Eclipse Views
org.eclipse.ui.views

Alaska Help
alaska.help

XStream
com.thoughtworks.xstream

Figure 3.1.: Alaska’s plug-in composition

3.1.1. Eclipse Rich Client Platform

The Eclipse Rich Client Platform is used to abstract the application from the

underlying operating system. In order to stay operable on other operating sys-

tems, only the two lowermost plug-ins in figure 3.1 have to be replaced by their

appropriate counterparts compatible with the target platform. Besides abstrac-

tion, the RCP is among many other tasks responsible for running the platform,

handling plug-in management and providing an extension registry.

3.1.2. Basic User Interface

SWT, the Standard Widget Toolkit [NW04], offers platform-independent func-

tionality for building graphical user interfaces having a native style. This is

done by making use of platform-specific operating system features and having

customized implementations for different platforms but providing the developer

with a common interface. Draw2d is built on top of SWT and is a lightweight

toolkit of graphical components called figures. In this context, ”lightweight”

means that figures are just Java objects with no corresponding resource in the

operating system. This connection to graphical elements of SWT is established

by EventDispatchers and UpdateManagers, as illustrated in figure 3.2. Be-

54

3.1. Plug-in composition

Draw2d – Behind the Scenes

FigureCanvas

swt.widgets.Canvas

IFigure

contents

EventDispatcher

UpdateManager

! Schedule layouts

! Calculate damage

IFigure

IFigure IFigure

IFigure

IFigure IFigure

LightweightSystem

! Mouse

! Keyboard

! Focus

Figure 3.2.: Draw2d’s lightweight figures

sides that, Draw2d comes along with a coordinate system allowing the transla-

tion between absolute and relative coordinates and provides connections between

graphical elements which have definable decorations and different routing styles.

3.1.3. Eclipse Rich Client Platform User Interface

In order to provide RCP applications with a consistent, professionally looking

graphical surface, several plug-ins have been developed among which most are

based on SWT. JFace [Dau07] extends SWT’s functionality by extending it with

the model-view-controller pattern and introducing several helper classes support-

ing the developer in the creation of clean, well-structured code. On top of JFace

lies the actual Eclipse Workbench user interface which comprises many concepts

like Views, Editors, Perspectives, Dialog, Wizards etc. familiar from the Eclipse

IDE. Additionally, a framework for managing help content is included.

55

Chapter 3. Architecture of Alaska

����� �!"#����# $%�&

�

 !"#$%&

 !"#$%&#'%(#)&*

 !"#$%& !"#$%&

 !"#$%& !"#$%&� �

Figure 3.3.: Visualization mechanism producing a graphical representation of a model

3.1.4. Graphical Editing Framework

GEF, the Graphical Editing Framework, is built on top of Draw2d and is pri-

marily used for visualizing models and interacting with them. Visualization is

handled by so called EditPartFactories which create EditParts based on in-

serted models, as depicted in figure 3.3. Such an EditPart plays the role of a

controller in the MVC-pattern, creates a graphical representation of the model

and bridges both parts. The EditPart is also responsible for creating sub el-

ements by querying the model for children and producing based on them new

EditParts, again utilizing the EditPartFactory.

Generally speaking, EditParts perform graphical editing in the sense of that

they delegate work to sub EditParts, display feedback during complex interac-

tions with the user and manipulate the model in the way denoted in figure 3.4.

Interactions having the form of SWT Events triggered by user input like mouse

clicks or keyboard strokes are handled by corresponding tools which then for-

ward the event as Request to an EditPart responsible for the graphical element

which received the user input. The EditPart then asks installed EditPolicies

having one or more roles like CONNECTION ROLE or LAYOUT ROLE to handle the

56

3.1. Plug-in composition

SWT Events

Tool

Requests

EditPart

Commands

EditPartEditPart EditPolicyEditPolicyEditPolicyEditPolicyEditPolicyEditPolicy

Requests

Commands

Stack

Commands

?

 !"#$%%&'()*+,

%-(%$%%&'()*+,

.%/0"11(2&+,

Figure 3.4.: Delegation of Requests to EditPolicies for Command creation

Request which may result in the creation of Commands responsible for updating

the model. In this context, roles are used for correct Request routing and enable

interchangeability of EditPolicies. The graphical user interface itself consists

of a hierarchy of Figures and is usually kept up to date by utilizing listeners

hooked on the model. Furthermore, useful workbench functionality comes along

with GEF which comprises an undo/redo mechanism, key-bindings as well as

contributions having the form of actions, menus and toolbars.

3.1.5. XStream

Its creators describe XStream2 as simple library to serialize objects to XML and

back again. A convenient property is the one that most objects can be serialized

without the need for specifying what the XML-representation should look like.

This fact in combination with the promise that the standard mapping behav-

ior is kept stable throughout further releases of the persistency framework make

XStream a powerful tool. It reduces the needed amount of refactoring drasti-

cally when developers are confronted with model changes. Finally, XStream is

probably best known for the idea of producing clean XML by dropping informa-

2http://xstream.codehaus.org

57

Chapter 3. Architecture of Alaska

tion which can be deduced by using the reflection mechanism and for having an

efficient full object graph support avoiding duplicates of objects.

3.1.6. Alaska Help

This plug-in is based on the Eclipse Help plug-in and contains a detailed doc-

umentation of the Alaska journey simulator in the form of HTML pages and

screen-casts. By extending the native Eclipse help system, features like a key-

word search and a table of contents can be used out of the box along with the

standard Eclipse look and feel.

3.1.7. Alaska Core

The Alaska Core plug-in contains the actual program logic and implements

all concepts discussed in chapter 2. Besides providing the business model for

the journey simulator, it comprises logging functionality crucial for persisting a

travel’s progress as well as decisions made by the traveler. Furthermore, several

services are included, which are responsible for simulating the journey environ-

ment. This comprises making decisions about actions’ availability, calculating

their durations as well as performing local weather forecasts.

3.1.8. Alaska User Interface

The Alaska User Interface plug-in can be roughly categorized into two parts which

have different responsibilities. The task of the first one of these is obviously to

provide the application user with an attractive and intuitive graphical interface.

This exercise was accomplished by extensively making use of previously discussed

plug-ins like the Eclipse UI Framework and the Graphical Editing Framework.

Beneath a powerful calendar editor, six different views exist with each of them

supporting the user in his decisions by providing him with information struc-

tured in a compact way. The second part of the plug-in is used to refine the

core functionality in order to support plan-driven-specific as well as agile-specific

behavior.

58

3.2. Three-layered Architecture

3.2. Three-layered Architecture

Similar to many other well-structured desktop applications, Alaska can be di-

vided into three different layers: The persistency layer, the presentation layer

and the layer containing the business logic. It is important to avoid an overlap

of these layers to keep the system well-structured and maintainable and to ease

replacement of single modules. Figure 3.5 summarizes the most important com-

B
u

s
in

e
s
s
 l
o

g
ic

 l
a
y
e

r

C
o

n
c
e

p
ts

S
e
rv

ic
e
s

P
la

n

Persistency layer

IJourneyRestorer

CalendarLoggerAgileCalendarLogger

CalendarRestorerAgileCalenarRestorer

PromLogger

BetaDistribution

ChangeActionConfigEvent

ActionConfig

Action

BoxConfig

Box

Game

Plan

Time Location

IAvailabilityService

IBookingServiceICertaintyService IConstraintServiceIDurationService

IEventService

IPersistableService IService

IWeatherService

ServiceProvider ServicePersistence

WeatherCharacteristics

GameConfig

Route

RouteConfig

Accommodation

AccommodationConfig

Activity

ActivityConfig LateBindingBox

LateModelingBox

LateBindingBoxConfig LateModelingBoxConfig

PlanItem

PlanItemConfig

C
o

n
s
tr

a
in

ts

CorequisiteConstraint

Constraint

JourneyCompletionDayConstraint JourneyEndLocationConstraintMaxConstraint MinConstraint

MutualExclusionConstraintPrerequisiteConstraint

AbstractActionConstraint AbstractCompletionConstraint BudgetConstraint

EqualDistribution SpecificDistributionTriangleDistribution

NewActionConfigEventEventPlayer

U
I

M
o
d

e
l

IJourneyValidator CalendarValidator AgileCalendarValidator

Presentation layer

CalendarEditorGameEditor AgileCalendarEditor

MapViewAvActionViewAvBoxViewPlannedItemViewProblemView WeatherForecastView

CustomTreeViewer

Calendar UIModels

AgilePerspectiveCalendarPerspectiveStartPerspective Composites Dialogs

CommandsActions EditParts EditPolicies

XMLPromWriter DBPromWriterIPromWriter

DBPromConnectivity

DBPromReaderXMLPromParserIPromReader

Figure 3.5.: Three-layered architecture of Alaska

59

Chapter 3. Architecture of Alaska

ponents of the Alaska application which are discussed in the remainder of this

chapter.

3.2.1. Presentation Layer

The presentation layer contains all graphical components responsible for enabling

a human being to intuitively use the Alaska system. The composition of sin-

gle elements is defined in the perspectives at which the StartPerspective is

empty and is used after the program’s startup to act as a transitional solution

before one of the two main perspectives becomes active depending on the trav-

eler’s choice of planning methodology. Both, the CalendarPerspective and the

AgileCalendarPerspective have very much in common in order to avoid that

the users have to learn the program operation twice (see figure 3.6).

Plan-driven approach components Agile approach componentsShared components

GameEditor

CalendarEditor AgileCalendarEditorStartPerspective

AgileCalendarPerspectiveCalendarPerspective PlanItemView

MapView

WeatherForecastView

AvActionView

AvBoxView

ProblemView

Figure 3.6.: Sharing components to increase usability and to flatten the learning curve

The CalendarPerspective contains a CalendarEditor which is a subclass

of GameEditor and allows the traveler to schedule actions in a calendar-like

fashion. Besides a smart Drag and Drop concept, context menus provide the

user with all needed functionality. In contrast to the AgileCalendarEditor, the

CalendarEditor is capable of handling travel packages which have the form of

LateBindingBoxes and LateModelingBoxes whereas the AgileCalendarEditor

allows the scheduling of parallel Actions.

Common in both perspectives are further the ProblemView informing about in-

consistencies originating from an invalid travel plan, the WeatherForecastView

60

3.2. Three-layered Architecture

presenting a graphical forecast of a chosen location’s weather, the PlannedItem-

View providing the traveler with more detailed information and control mech-

anisms of scheduled elements, the MapView offering a scrollable and zoomable

map interface supporting the player geographically in planning decisions and

the AvActionView listing available Actions and in combination with their char-

acteristics. Similar to the AvActionView, but only available in the Calendar-

Perspective, is the AvBoxView containing available tour-packages and serving

as drag source for the Editor. Further graphical elements of the presentation

layer are customized Composites, diverse Dialogs for e. g. realizing the model-

ing of Boxes’ content and informing about occurring Events and a customized

TreeViewer.

The interaction between the presentation layer and the business logic layer re-

flects architectural core concepts of GEF and makes extensive use of EditParts

and Commands created by corresponding EditPolicies. Figure 3.7 clarifies the

interplay of these classes by using a move operation performed on an Action in

the CalendarEditor as example. First, the Action is dragged which is recog-

nized by the operating system and forwarded by SWT as Event to some Event-

Dispatcher. This class then detects that the Event is a SelectionEvent, which

leads to another forwarding to GEF’s SelectionTool. The SelectionTool del-

egates the work to its DragEditPartsTracker, which tracks the position and

status of dragged EditParts and creates Requests. Such a Request is used

like a query to obtain a Command from the target EditPart. Usually, Command

creation is delegated to installed EditPolicies which enables the developer to

move code which modifies business objects away from EditParts.

In a second step, the user drops the Action which is again noticed by an

EventDispatcher. In a similar way as before, the MouseEvent is forwarded to

the DragEditPartsTracker which now executes the Command obtained in the

previous step. An important fact is that the abstraction from the user interface

data – in this case the conversion from mouse coordinates of the CalendarEditor

to a Time object in the game – is performed by EditPolicies.

61

Chapter 3. Architecture of Alaska

E
v
e
n
tD

is
p
a
tc

h
e
r

S
e
le

c
tio

n
T

o
o
l

D
ra

g
E

d
itP

a
rts

T
ra

c
k
e
r

C
a
le

n
d
a
rA

c
tio

n
E

d
itP

a
rt

R
e
q
u
e
s
t

C
a
le

n
d
a
rA

c
tio

n
E

d
itP

o
lic

y
U

IM
o
d
e
lC

a
le

n
d
a
r

m
o
u
s
e
D

ra
g

(m
o
u
s
e
E

v
e
n
t, v

ie
w

e
r)

m
o
u
s
e
D

ra
g

(m
o
u
s
e
E

v
e
n
t, v

ie
w

e
r)

m
o
u
s
e
U

p

(m
o
u
s
e
E

v
e
n
t, v

ie
w

e
r)

<
<

c
re

a
te

>
>g
e
tC

o
m

m
a
n
d

(re
q
u
e
s
t)

g
e
tC

o
m

m
a
n
d

(re
q
u
e
s
t)

c
o
m

m
a
n
d

c
o
m

m
a
n
d

m
o
u
s
e
U

p

(m
o
u
s
e
E

v
e
n
t, v

ie
w

e
r)

s
e
tC

u
rre

n
tC

o
m

m
a
n
d
(c

o
m

m
a
n
d

)

p
e
rfo

rm
D

ra
g
()

e
x
e
c
u
te

()

<
<

c
re

a
te

>
>

M
o
v
e
P

la
n
Ite

m
In

C
a
le

n
d
a
rC

o
m

m
a
n
d

m
o
v
e
C

a
le

n
d
a
rIte

m

(ite
m

, tim
e
)

F
ig

u
re

3
.7

.:
S
eq

u
en

ce
d
iagram

of
an

A
c
t
i
o
n

m
ove

op
eration

62

3.2. Three-layered Architecture

3.2.2. Business Logic Layer

The business logic layer contains all core functionality needed to simulate a jour-

ney. This layer acts as connection between the persistency layer used for per-

sisting core data as well as tracking core operations and the presentation layer

responsible for visualizing data and providing the user with an interface. The

business logic layer can again be divided into three sub categories.

Concepts

The central part of the business logic layer is the one containing all concep-

tual elements discussed in chapter 2 (see figure 2.13 on page 51). A Game holds

all information relevant for planning a journey and knows its Player, the cur-

rent Time as well as the current Location and has a reference to the journey

Plan. The Plan contains a list of PlanItems, which have a start Time and

can be either Actions or Boxes. Actions are separated into Accommodations,

Activities and Routes, and Boxes can be divided into LateBindingBoxes and

LateModelingBoxes.

The difference between these classes and the corresponding configurations is

that for example an Action represents a traveler’s operation between two points

of time and can be seen as instance of its configuration, whereas a configuration

holds information valid for all instances like their name or description. Fig-

ure 3.8 illustrates the dependencies between configurations and instances and

the elements in between called proxies. A configuration stores all static, im-

mutable information and is used within several different games, whereas proxies

are modifiable objects encapsulating configurations and storing changes caused

by occurring events. When instances have to work with data from the configura-

tion, they ask instead the corresponding proxy object which provides the actual

data specific for the current game. The creation progress goes from left to right

– configurations create proxies when a new game is created and proxies create

corresponding Actions when needed during the game. Technically seen, this

design reflects the use of two design patterns: The “Factory Method Pattern”

63

Chapter 3. Architecture of Alaska

and a slightly modified version of the “Proxy Pattern” without a common super

class [GHJ94].

When considering Action’s class hierarchy, it can be observed that Action pro-

vides many methods for manipulating itself or subclasses. An Action is always

aware of its State and even remembers past state transitions. Core methods

work based on this information and with the help of diverse services in order

to check whether state transitions are possible and to trigger such transitions.

The key idea behind this is that subclasses can extend and adapt these methods

to guarantee correct behavior. An example might be that upon execution of an

Accommodation it has to be checked whether the current day is not the last day

of the journey, whereas when planning a Route, there just has to be enough time

left on the current day.

User Interface Model

The user interface model, as the name already suggests, is a model encapsu-

lating the actual business model but containing also information relevant for

visualization. A simplification of this relation is depicted in figure 3.9 and points

out the parallelism of the class hierarchy – UIModelCalendarBox and UIModel-

CalendarAction are user interface models of Box and Action respectively. A

common superclass UIModelCalendarItem provides advantages by enabling poly-

morphism similar to PlanItem in the core model. Finally, UIModelCalendar is

the correspondent to Plan and coordinates UIModelCalendarItems.

Besides that, the user interface model is enriched with a notification mechanism

which informs listening components like elements of the graphical user interface

about model changes. Figure 3.10 illustrates the dependencies and shows that

the flow of information about a change is going up the model hierarchy and

is distributed by a top-level element in the presentation layer to correspond-

ing lower-level elements. More precisely speaking, model changes appear when

methods are called by controller classes on a UIModelCalendarAction or on a

UIModelCalendarBox. Depending on the change, a PropertyChangeEvent is

generated which holds all information about the occurred change and this event

is then forwarded to the top-level model element, which is UIModelCalendar in

64

3.2. Three-layered Architecture




































































































































































































































































































































































































































































































































































































































































































































F
ig

u
re

3
.8

.:
P

ro
x
ie

s
ac

ti
n
g

as
in

te
rm

ed
ia

te
s

b
et

w
ee

n
co

n
fi
gu

ra
ti

on
s

an
d

in
st

an
ce

s

65

Chapter 3. Architecture of Alaska

 



















Figure 3.9.: User interface model as an extension of the core model

the plan-driven perspective. UIModelCalendar is a subclass of AbstractJourney

which again is a subclass of UIModel. The latter implements a PropertyChange-

Support which allows an arbitrary number of listeners to register themselves and

to get informed about changes. In our scenario, the CalendarEditor is informed

which the actual step across the border to the presentation layer. The Calendar-

Editor, which is a subclass of GameEditor, has two kinds of duties: First, it has

to find the EditPart belonging to the modified model with the help of a mapping

and to trigger an update to refresh graphical elements. The second task is to

inform global components like actions, views and the status line.

Furthermore, the user interface model extends the set of functionality provided

by the core model to some degree and supports methodology-specific concepts

like boxing in plan-driven journeys and parallel execution paths in agile voy-

ages. Additionally, it contains validation mechanisms which check the integrity

of planned journeys (see figure 3.11). Since agile and plan-driven journeys have

a different conception of validity, two specific validators are needed at which

the following discussion focuses on the CalendarValidator responsible for the

plan-driven UIModelCalendar.

The first thing the CalendarValidator checks is the availability of Actions.

In this context, Actions lying in the past are not taken into consideration whereas

Actions of the current day of which the availability is exactly known have to be

available. In addition to that, it is checked whether future Actions’ expected

66

3.2. Three-layered Architecture

UIModelCalendarAction UIModelCalendarBox

UIModelCalendarItem

triggerFirePropertyChange triggerFirePropertyChange

UIModelCalendar

subModelFiresPropertyChange

AbstractJourney

AgileCalendar

UIModel

firePropertyChanged

Agile model updates

firePropertyChanged

firePropertyChanged

CalendarEditPart

CalendarEditor

propertyChange

AgileEditor

informListenersAboutModelChange

GameEditor
informListenersAboutModelChange

Agile model updates

CalendarActionEditPart

CalendarBoxEditPart

refreshCorrespondingEditParts

AbstractCalendarViewPartActions Statusline

update

AvActionView

AvBoxView

MapView

WeatherForecastViewPlannedItemView

ProblemView

Figure 3.10.: Change-notification mechanism in the user interface model

AbstractJourney

UIModelCalendar AgileCalendar

AbstractValidator

CalendarValidatorAgileCalendarValidator

<< creates >>

<< validates >>

Figure 3.11.: Journeys and corresponding validation classes

67

Chapter 3. Architecture of Alaska

availability is at least above zero. Another important subject of inspection is

the geographic compatibility of Actions, meaning that the end Location of a

preceding Action must be equal to the start Location of the succeeding one. Be-

sides that, a Plan is only judged as valid when every day of the journey contains

an Accommodation to spend the night at. Finally, all global constraints like hav-

ing mandatory Actions included in the Plan or finishing the journey at a specific

Location have to be satisfied. In the case of invalidity, a ValidationResult is

returned which contains one or more Failures explaining the validation result

and providing hints about the source of error. This in return allows the highlight-

ing of faulty elements in the calendar which dramatically eases error handling for

the user.

Services

Services are a crucial element of Alaska’s core, since they simulate the envi-

ronment of a journey. The IAvailabilityService determines whether a given

Action is available at a certain point of time. The IDurationService informs

about an Action’s duration which can vary within a certain time frame and the

ICertaintyService calculates with which certainty the maximum business value

will result from executing an Action. Furthermore, the IConstraintService is

used for performing generic checks on the travel plan, the IBookingService is

utilized to perform bookings which guarantee the availability of its subject, the

IEventService coordinates the creation of random Events and the IWeather-

Service is used to obtain Location dependent forecasts of the weather.

All services can be accessed by using the ServiceProvider and are unique

for each instance of Game. In order to be able to restore a service’s state after

loading a saved game, its data has to be persisted in some way. By implementing

the interface IPersistableService, each service can define which data should

be stored by itself and the actual storage procedure happens in the persistency

layer.

68

3.2. Three-layered Architecture

3.2.3. Persistency Layer

The persistency layer is the connection between the business logic layer and the

underlying storage device. During the application’s startup, an IGameConfig-

Service is created which searches at a predefined location for game configura-

tions which have the form of ZIP files. Such a file typically contains the ac-

tual configuration stored in a XML format and associated images referenced

by the configuration. The IGameConfigService unmarshals the configuration

and creates a user interface model of it which is equipped with a reference to

the ZIP file to enable load on demand behavior for images. During a journey,

all user inputs relevant for reconstructing a voyage are being logged which is

done by the PromLogger making use of a IPromWriter. Depending on the cho-

sen planning methodology, the AgileCalendarLogger or the CalendarLogger

makes use of the PromLogger’s basic logging mechanism and produces logging

entries for Action creations, Action movements, occurrences of Events, etc.

The logged information is further enriched with data describing modifications of

service’s states and conforms to the Mining XML [vdAvDG+07] format. Based

on logged information, a journey can be restored step by step: An IPromReader

analyzes the input and the unmarshalled data to one of IJourneyRestorer’s sub-

classes AgileCalendarJourneyRestorer and CalendarJourneyRestorer, de-

pending on the type of journey. This is a powerful feature and enables the user

to restore his journey until a certain point of time and to try some alternatives

from there on.

Currently there exist two implementations for the IPromReader and IProm-

Writer – one supporting persisting data to files in XML format and the other

allowing their storage in a relational database. Figure 3.12 illustrates how the

persistency layer classes are related to each other. Furthermore, figure 3.13 pro-

vides an overview of possible information flows within the persistency layer.

69

Chapter 3. Architecture of Alaska

IPromWriter IPromReader

XMLPromWriter DBPromWriter DBPromReader XMLPromParser

PromLogger

CalendarLoggerAgileCalendarLogger

<<uses>>

IJourneyRestorer

CalendarRestorerAgileCalendarRestorer

<<uses>>

INPUT OUTPUT

DBPromConnectivity

Figure 3.12.: Class diagram of the persistency layer

70

3.2. Three-layered Architecture

<
P

ro
ce

ss
id

=
„J

o
u

rn
e

y
 t

o
T

y
ro

l"
 t

y
p

e
=

"P
la

n
d

ri
ve

n
">

<
P

ro
ce

ss
In

st
a

n
ce

id
=

„M
a

x
M

u
st

e
r@

G
a

m
e

S
ta

!
o

n
">

<
A

u
d

it
T

ra
il

E
n

tr
y

>

<
D

a
ta

/>

<
W

o
rk

fl
o

w
M

o
d

e
lE

le
m

e
n

t>
Jo

u
rn

e
y

 t
o

T
y

ro
l<

/W
o

rk
fl

o
w

M
o

d
e

lE
le

m
e

n
t>

<
E

ve
n

tT
y

p
e

>
U

P
F

R
O

N
T

_
P

LA
N

N
IN

G
<

/E
v

e
n

tT
y

p
e

>

<
T

im
e

st
a

m
p

>
T

im
e

[U
P

F
R

O
N

T
_

P
H

A
S

E
]<

/T
im

e
st

a
m

p
>

<
/A

u
d

it
T

ra
il

E
n

tr
y

>

<
A

u
d

it
T

ra
il

E
n

tr
y

>

<
D

a
ta

>
<

A
$

ri
b

u
te

 n
a

m
e

=
"C

a
le

n
d

a
rE

ve
n

t#
1

">
P

a
rt

y
 E

in
la

d
u

n
g

<
/A

$
ri

b
u

te
>

<
/D

a
ta

>

<
W

o
rk

fl
o

w
M

o
d

e
lE

le
m

e
n

t>
S

im
p

le
 J

o
u

rn
e

y
 t

o
T

y
ro

l<
/W

o
rk

fl
o

w
M

o
d

e
lE

le
m

e
n

t>

<
E

ve
n

tT
y

p
e

>
E

V
E

N
T

_
O

C
C

U
R

E
D

<
/E

v
e

n
tT

y
p

e
>

<
T

im
e

st
a

m
p

>
T

im
e

[0
d

,3
0

9
m

in
]<

/T
im

e
st

a
m

p
>

<
/A

u
d

it
T

ra
il

E
n

tr
y

>

…

U
p

p
e

r
la

ye
rs

P
e

rs
is

te
n

cy
la

ye
r

IJ
o

u
rn

e
y
R

e
st

o
re

r
P

ro
m

Lo
g

g
e

r

G
a

m
e

C
o

n
fi

g

st
o

ra
g

e

G
a

m
e

-l
o

g

st
o

ra
g

e

lo
a

d
 lo

g
g

e
d

 g
a

m
e

s
co

n
!

n
u

o
u

s
lo

g
g

in
g

lo
a

d
 g

a
m

e

co
n

fi
g

u
ra

!
o

n
s

C
a

le
n

d
a

rL
o

g
g

e
r

D
B

P
ro

m
W

ri
te

r

X
S

tr
e

a
m

ty
ro

lJ
o

u
rn

e
y

.z
ip

|
->

 g
a
m
e
C
o
n
fi
g
.x
m
l

|
->

 i
m

g

|
--

>
 h

o
te

l.
p

n
g

|
--

>
 r

a
'

in
g

.p
n

g

|
--

>
 i

se
lm

o
u

n
ta

in
.p

n
g

…

C
a

le
n

d
a

rJ
o

u
rn

e
y
R

e
st

o
re

r
A

g
il

e
C

a
le

n
d

a
rJ

o
u

rn
e

y
R

e
st

o
re

r
A

g
il

e
C

a
le

n
d

a
rL

o
g

g
e

r

D
B

P
ro

m
C

o
n

n
e

c!
v
it

yD
B

P
ro

m
R

e
a

d
e

r
X

M
LP

ro
m

W
ri

te
r

X
M

LP
ro

m
P

a
rs

e
r

X
S

tr
e

a
m

F
ig

u
re

3
.1

3
.:

F
lo

w
of

in
fo

rm
at

io
n

in
th

e
p
er

si
st

en
cy

la
ye

r

71

Chapter 4.

Experiment

“The great tragedy of Science – the slaying of a beautiful hypothesis by an

ugly fact.”

Thomas Huxley

In this chapter, the experiment and its results are described in detail. We begin

our discussion in section 4.1 with an explanation of basic terminology frequently

used in subsequent sections. Afterwards, we give an outline of the experiment’s

design (section 4.2) followed by section 4.3 describing the experiment’s execution

and the collection of relevant data. Subsequently, in section 4.4, the data is

analyzed, the results’ meaning is explained (section 4.5) and in section 4.6, a risk

analysis is conducted and combined with proposals for risk mitigation. At the

end of the chapter, the experiment’s results are extensively discussed (section

4.7).

4.1. Basic Terminology

Various design guidelines about software experiments can be found in literature

[Bro90],[PSS81]. Important expressions essential for understanding the experi-

ment’s design have to be explained before demonstrating the actual experiment

process. In order to clarify terminology, a scenario of an example experiment

adapted from [Bor77] will be used. In this, the experimenter wants to examine

which impact the use of election advertising has on townsmen’s votes. In sub-

sections 4.1.1 to 4.1.6, all important concepts will be explained in detail at which

73

Chapter 4. Experiment

Objects

Subjects

Recording

of data

Independent

variables

Response

variables

influence

measure

analyze Hypothesis

H0

confirm

disprove

XOR

executes,

chooses,

votes,

affects,

etc.

Figure 4.1.: Basic concepts of an experimental setup

the overall interplay of them is illustrated in figure 4.1. Subjects, which are influ-

enced by independent variables, manipulate or act on a set of provided objects.

The consequences of the subjects’ actions are measured by the experimenter to

obtain the response variables. In a second step, he analyzes the data and decides

whether to accept or reject a stated hypothesis H0.

4.1.1. Subjects

Subjects can be persons, physical objects as well as non-physical things like

opinions or style trends. They serve as source for experimental data by actively

producing input or by passively providing processible information. In connection

with the election scenario, all citizens entitled to vote are in fact subjects of the

experiment.

4.1.2. Objects

Objects as well as subjects can take diverse forms. They form the task, problem

or exercise with which the subjects are confronted. Because of this, the choice

74

4.1. Basic Terminology

of objects highly influences data produced by subjects. As example, the election

together with a set of electable parties form the experiment’s object.

4.1.3. Independent Variables

Independent variables, also referred to as factors, are experimental variables

which are manipulated by the experimenter. They are control parameters allow-

ing him to conduct the experiment multiple times in parallel with each having

different factor level configurations. Based on that, the experimenter can group

his results to gain information about the impact of the parameter’s variation.

Generally, only a small set of independent variables are selected to be controlled

in the experiment. The amount of election advertising is such an independent

variable which can take several magnitudes.

4.1.4. Response Variables

A parameter value measured during or after the experiment is called response

variable. Such a variable usually depends on independent variables and may be

influenced by other response variables. Generally speaking, the response variable

is essentially a measure of the effect of change in an independent variable and

is determined when the participants of the experiment apply the factor levels

to an object. Analysis of an experiment is primarily conducted based on the

combination of independent and response variables. Considering again the elec-

tion scenario, the response variable is the election’s result – more precisely the

number of votes a monitored party receives for a certain election given a certain

amount of money spent on advertisements.

4.1.5. Experimental Designs

Probably the most important concern in experiments is the possibility to be in

full control over the experimental situation. Such experiments are called ran-

domized or true experiments. Unfortunately, the experimenter is often not free

to determine the subjects by himself or to control independent variables (see

75

Chapter 4. Experiment

Randomized or true

experiment

Quasi-experiment Non-experiment

no

Is random

assignment used?

Is there a

control group or

multiple measures?

yes

noyes

Figure 4.2.: Three different types of experimental design

figure 4.2). As a result, the assignment of single subjects to groups is not ran-

domized anymore. Such experimental situations form part of quasi-experimental

designs. The third category are non-experimental designs in which there are

neither multiple goups nor multiple waves of measurements [Tro00].

Due to randomization, true experimental designs deliver the most significant

results. As mentioned before, the experimenter is often confronted with situa-

tions prohibiting randomized group assignments. As a result, he has to use a

quasi-experimental design. The important thing to mention here is that the sig-

nificance of results obtained from such experiments strongly depends on whether

the groups are balanced or not. If the distribution of subjects among different

groups is well-balanced, quasi-experimental designs deliver results being nearly as

significant as results obtained from true experiments. Finally, a non-experimental

design is the least meaningful experiment design. Still, the experimenter is some-

times forced to establish such an experiment – just imagine a study about the

effects of a natural disaster like a tornado by interviewing survivors. You will

only have one comparison group (townsmen who are still alive in the affected

city) as long as the tornado does not devastate a second city. A further example

could be that a university professor wants to compare levels of success of different

forms of student courses. He compares lectures, tutorials and a combination of

both, but is unable to perform his experiment at only one university because of

administrative reasons. Therefore, he is forced to compare results from differ-

76

4.2. Experiment Design

ent universities. Unfortunately, they provide different forms of courses offered

to students coming from diverse semesters. This in fact prohibits the professor

from having full control over the choice of subjects

4.1.6. Hypotheses

An experiment is generally conducted to produce data which is then statistically

analyzed [Ste99]. Based on the results, a postulated hypothesis is either accepted

or rejected with a certain amount of significance. Hypotheses are simplified, un-

ambiguous models of reality [PKB05]. A scientist usually makes an assumption,

formulates it as hypothesis and tries to falsify it. In this experiment, two statisti-

cal hypthesis are postulated which make an assumption about the distribution of

a random variable. When considering a distribution’s mean value µ, one distin-

guishes between the null hypothesis H0 and the alternate hypothesis H1, which

state the following:

H0: µ = µ0 or ∀i, j ∈ {1..n} : µi = µj (4.1)

H1: µ 6= µ0 or ∃i, j ∈ {1..n} : µi 6= µj (4.2)

The chosen level of significance γ can be seen as point of reference and limits

the probability of making errors. In this context, two types of wrong decisions

can be made: the type I error rejecting a null hypothesis when it is actually

true and the type II error failing to reject a null hypothesis when the alternative

hypothesis is true.

4.2. Experiment Design

This section describes the experiment’s design and identifies its subjects, objects,

independent variables etc. An overall summary can be found in table 4.1 as well

as figure 4.3.

The Alaska application, already mentioned in previous chapters, is used in the

experiment. Subjects are students of a Bachelor Computer Science program at

the University of Innsbruck. In order to mitigate learning effects in connection

77

Chapter 4. Experiment

Design terminology Corresponding element

Subject Bachelor Computer Science program students
Object Two game configurations of Alaska
Independent variables quasi independent:

choice of using design deferring techniques
Response variables overall business value of journey

absolute change frequency of game plan
Experiment design type Quasi-experimental design, unbalanced single factor experi-

ment with repeated measurement
Hypotheses Design decision deferring techniques do not have an impact

on business value and number of project plan adjustments

Table 4.1.: Elements of this experiment’s design

Game configurations

Bachelor students

Recording

of data

Decision deferring

techniques

Business values

offered to

log

analyze Hypothesis

H0

confirm

disprove

XOR

Plan journey

in

California

Alaska

Plan adjustments

use / don’t use

Figure 4.3.: This experiment’s setup

with a second experiment being executed in parallel and playing a role in [Zug08],

two travel scenarios are used. From the view of the simulator application, travel

scenarios are GameConfigs (see chapter 3) and define the general framework of a

journey. This comprises among other concepts a set of locations combined with

possible actions, constraints which have to be taken into account, and events

which might happen unexpectedly.

Both GameConfigs are defined by the experimenter and form the experiment’s

objects. They differ in their design because the first configuration taking the

traveler to California does not allow precise estimations about action’s duration

whereas the Alaskan journey, as the second configuration, confronts the traveler

78

4.2. Experiment Design

with a lot more unforeseen events. The degree of complexity concerning the

number of existing locations and actions is approximately the same. Besides that,

scenario 1 is characterized by more stable weather conditions whereas Alaska

basically only allows to take one reasonable route in order not to lose too much

business value. These circumstances force us to analyse results originating from

unequal configurations separately.

This experiment’s independent variable is the traveler’s choice whether to

use decision deferring techniques in the plan-driven simulation or not. The two

response variables are the overall business value of a finished journey and the

number of performed travel plan adaptation steps.

To clarify how we obtain results crucial for this thesis, we have to explain

the overall experiment process including the part of Zugal [Zug08], Alaska’s co-

author: Zugal’s independent variable is the applied planning methodology which

is controlled by the experimenter as follows: The subjects are randomly divided

into two groups of equal size. During the experiment, each group has to plan two

journeys in both scenarios, but uses different planning techniques (see figure 4.4).

Group A plans a journey in travel scenario 1 (California) by using the plan-driven

approach, before planning a second journey in travel scenario 2 (Alaska) with the

help of agile concepts. Group B also starts with travel scenario 1 (California) but

makes use of the agile planning mode first whereas the second planning session

dealing with travel scenario 2 (Alaska) is plan-driven.

Focusing on this thesis’ experiment, only half of the gained results are of con-

cern. Data obtained from journeys planned by using the agile approach is dis-

carded, whereas data from plan-driven journeys is taken under consideration

(results of group A in first run and results of group B in second run – see figure

4.4). The interest primarily lies on differences between pure plan-driven journeys

and journeys making use of decision deferring tour packages.

Defining the student’s decision of whether to utilize such concepts or not as

fully controllable independent variable of the experiment would give us the pos-

sibility to obtain two equally sized samples. Because of the experiment’s setup,

this is not possible and the subjects can make the decision on their own accord-

79

Chapter 4. Experiment

1 Factor 1 Objectn Participants
G

ro
u
p

 B

Participant n/2+1

Participant n

Factor Level 1:

Plan-driven

approach

Factor Level 2:

Agile

approach

Travel scenario 1

G
ro

u
p

 A

Participant 1

Participant n/2

Travel scenario 1

G
ro

u
p

 B

Participant n/2+1

Participant n

Factor Level 2:

Agile

approach

Factor Level 1:

Plan-driven

approach

Travel scenario 2

G
ro

u
p

 A

Participant 1

Participant n/2

Travel scenario 2

First Run Second Run

Overall Experiment

Completion of first

applied Factor Level

1 Factor 1 Objectn Participants

Figure 4.4.: Two phases of the experiment

ing to their preferred planning behavior. As we will see later on, this does not

mitigate this experiment’s expressiveness due to the near-balance of groups.

As a consequence, this thesis’ experiment can be seen as unbalanced single

factor experiment with repeated measurement investigating the effects

of the adoption of advanced planning concepts like tour packages on the two

previously mentioned response variables (business value and absolute change fre-

quency). The central question of how these indicators behave depending on the

use of decision deferring techniques leads to the formulation of two null hypothe-

ses:

• HBV
0 : Using advanced techniques like Late Modeling and Late Binding

yields no significant difference in resulting business value when compared

to strict plan-driven methodologies.

• HCF
0 : Using advanced techniques like Late Modeling and Late Binding

yields no significant difference in frequency of project plan changes when

compared to strict plan-driven methodologies.

In order to be able to derive these values, we make use of logging information

provided by Alaska and analyze the devolution of each journey in the samples.

80

4.3. Experiment Execution

This instrumentation procedure has very low risk because everything is done au-

tomatically – the user does not have to fill out questionnaires and is not explicitly

involved in the production of data to be analyzed. Furthermore, it is not feasible

for a user to manipulate logged data, because the latter is collected in a remote

protected database. Finally, for data analysis, we use well established statistical

methods and standard metrics ([RMHL91], [She00], [Bor77], [Hog06]).

Mathematically seen, the experiment consists of n subjects Si with 1 ≤ i ≤ n,

divided into two groups each of size n
2 . Each subject Si plans two journeys

using the agile and the plan-driven approach respectively as depicted in figure

4.4. To countervail learning effects, two different travel scenarios TC (California)

and TA (Alaska) are used. The data collection procedure gives us 2n results

RTC ,Agile
j , RTA,Agile

j as well as RTC ,P lan
j and RTA,P lan

j with j ∈ {1, . . . , n2 } in the

form of journey logs. Now we discard results obtained from agile journeys, omit

the second superscript for convenience and further refer to n as the number of

students planning a plan-driven journey within one run. Doing so, we end up

with two remaining result sets {RTC

1 , . . . , RTC
n } and {RTA

1 , . . . , RTA
n }.

4.3. Experiment Execution

The experiment took place in April 2008, was split up into four sessions taking

place during three days and its total duration was 12 hours. The participants

were 56 students of the Bachelor program in Computer Science at the Univer-

sity of Innsbruck and attended the courses Software Development and Project

Management as well as Advanced Topics in Software Engineering. The latter is

a course offered to both Bachelor and Master students which forced us to dis-

card Master students’ data in order to avoid having a too high variance among

experiences of subjects.

Each session began with a presentation summarizing the concepts of plan-

driven and agile planning techniques. The subjects also were informed about the

experiment’s process and its scientific connection to this thesis. Furthermore, we

explained that the analysis of their own planning behavior is the experiment’s

main goal and that different techniques of dealing with uncertainty will be avail-

81

Chapter 4. Experiment

learning and familiarization phase experiment phase

study documentation

+ view screencast

plan short test

journey

plan actual

experiment’s journey

Figure 4.5.: A familiarization phase prepended to the actual experiment run

able. Finally, we illustrated the idea of taking a journey as metaphor for a

software project and underlined the importance of planning in project manage-

ment.

Subsequently, we explained how to set up the Alaska simulator and randomly

assigned each student to one of two different groups. As depicted in figure 4.5, the

subjects first studied a screencast specific for the approach they had to follow and

then planned one or more test journeys in the first travel scenario – California.

At this, Learning and familiarization phase lasted for 20 minutes whereas the

actual Experiment phase lasted twice as long. After finishing the first round and

a short break, the subjects were asked to repeat the whole procedure but use the

complementary approach in a new planning scenario – Alaska.

4.4. Data Analysis Procedure

The data analysis procedure can be split up into two steps with the first one

focusing on the data’s validity and the second one analyzing the data using well-

established statistical methodologies.

4.4.1. Data Validation

During the experiment, all data sets are stored in a central database. To guar-

antee data consistency we discard data originating from test phases by con-

sidering logged timestamps. Furthermore, we exclude duplicates (loaded games)

as well as multiple games created by the same host.

82

4.4. Data Analysis Procedure

Data plausibility is analyzed by considering the journey’s state at the end

of the game and by estimating the students’ seriousness. We define the first

condition to be valid if all actions in the game plan have been executed, which

is the case in all data sets. The second condition is violated if the business

value of the journey under consideration is a lower outlier (smaller than median

minus three times the inter quartile range) and is judged by the experimenter as

futile. Only one data set had to be eliminated by this filtering which was already

predictable by studying the student’s behavior during the experiment.

4.4.2. Data Analysis

As mentioned before, we discard data from journeys planned using the agile

approach and take only results of plan-driven journeys of the first and second

test run into consideration denoted by

{RTC

1 , . . . , RTC
n }

{RTA

1 , . . . , RTA
n }

(4.3)

This data is again split up into two sets of unequal size using presence RT∗,+i and

absence RT∗,−i of tour packages respectively as differentiator where mC denotes

the number of test persons which make use of tour packages in the first run (Cal-

ifornia) and mA denotes the amount of test persons in the second run (Alaska)

making use of such packages. As a consequence, mC ,mA ∈ {1, . . . , n}

{RTC

1 , . . . , RTC
n } =⇒{RTC ,+

1 , . . . , RTC ,+
m1

}, {RTC ,−
1 , . . . , RTC ,−

n−m1
},

{RTA

1 , . . . , RTA
n } =⇒{RTA,+

1 , . . . , RTA,+
m2

}, {RTA,−
1 , . . . , RTA,−

n−m2
}

(4.4)

83

Chapter 4. Experiment

From these results which have the form of log entries in a central database, we

extract desired data which is the gained business value BV T∗,∗
i as well as the

number of project plan adaptations CF T∗,∗i during the game:

{RTC ,+
1 , . . . , RTC ,+

m1
} =⇒{BV TC ,+

1 , . . . , BV TC ,+
m1

}, {CF TC ,+
1 , . . . , CF TC ,+

m1
}

{RTA,+
1 , . . . , RTA,+

m2
} =⇒{BV TA,+

1 , . . . , BV TA,+
m2

}, {CF TA,+
1 , . . . , CF TA,+

m2
}

{RTC ,−
1 , . . . , RTC ,−

n−m1
} =⇒{BV TC ,−

1 , . . . , BV TC ,−
n−m1

}, {CF TC ,−
1 , . . . , CF TC ,−

n−m1
}

{RTA,−
1 , . . . , RTA,−

n−m2
} =⇒{BV TA,−

1 , . . . , BV TA,−
n−m2

}, {CF TA,−
1 , . . . , CF TA,−

n−m2
}

(4.5)

Our hypotheses HBV
0 and HCF

0 are now analyzed based on two-sided t-Tests

for two independent samples [RMHL91]. In doing so, we can decide whether

the means of data sets statistically differ from each other. We define our error

probability α = 0.05 and get as level of significance γ = 0.95. Focusing on the

business value, this means that we reject HBV
0 after successfully conducting two

two-sided t-Tests with data from the first and second run when

|TBV T∗ | > T0 = t(1 −
α

2
, n− 2) = t(0.975, 26) ∼= 2.056 (4.6)

with

TBV T∗ =

√

mk · (n−m∗)

n
·
BV T∗,+ −BV T∗,−

sBV T∗

∗ ∈ {C,A} (4.7)

At this, BV T∗,+ and BV T∗,− are the sample mean business values of the test

run using scenario ∗. sBV T∗ is the weighted standard deviation and is defined as

follows:

BV T∗,∗ =

∑lT∗,∗

i BV T∗,∗
i

lT∗,∗
(4.8)

sBV T∗,∗ =

√

√

√

√

∑lT∗,∗

i

(

BV T∗,∗
i −BV T∗,∗

)2

lT∗,∗ − 1
(4.9)

sBV T∗ =

√

(m∗ − 1)s2
BV T∗,+ + (n−m∗ − 1)s2

BV T∗,−

n− 2
(4.10)

84

4.4. Data Analysis Procedure

Testing of HCF
0 is performed analogously.

To guarantee the legitimacy of the t-Test, we have to check whether the samples

emanate from a normal distribution. This is done using the Kolmogoroff/Smirnov

Test [She00] at which we use a confidence interval of 5% which is approximately

defined as K0 = 1.36√
n

= 1.36√
28

∼= 0.257. The task here is to show that

Kx ≤ K0 (4.11)

at which

Kx = max

(

n
⋃

i=1

{
∣

∣S(xi) − Φ[x, sx](xi)
∣

∣,
∣

∣S(xi−1) − Φ[x, sx](xi)
∣

∣

}

)

(4.12)

Here, S denotes the relative cumulative distribution function of the input data

xi and Φ is the cumulative distribution function of the normal distribution using

mean value and standard deviation of the input data as estimation for the actual

distribution.

Furthermore, both samples which are to be compared must have the same

variance. This is tested using the two sample F-Test [Bor77] and we have to

check whether

max(s2x, s
2
y)

min(s2x, s
2
y)

= F ≤ F0,∗ = F
(

1 −
α

2
|m∗ − 1, n−m∗ − 1

)

(4.13)

where F0,∗ is the 1−α/2 = 0.975 quantile of the Fisher-distribution with m∗− 1

and n−m∗ − 1 as degrees of freedom and therefore depends on m∗, the number

of subjects using decision deferring techniques in scenario T∗. Besides that, x

and y represent the sample data the variances of which are to be compared. Pre-

conditions for applying the F-Test are that the samples emanate from a normal

distribution which has already been checked using the Kolmogoroff/Smirnov Test

and that both samples are independent from each other which is the case due

to the experiment’s setup. Additionally to the previously described test series,

we use statistical measures like the median, the interquartile range, the expected

85

Chapter 4. Experiment

using

advanced techniques

without

advanced techniques

California

using

advanced techniques

without

 advanced techniques

Alaska

Figure 4.6.: Distribution of subjects in both travel scenarios

value and the standard deviation to construct Box-Whisker plots to enable a

graphical interpretation of measured results.

4.5. Experiment Results

We analyzed the results of 56 subjects of which 28 did planning in travel

scenario TC and 28 did planning in scenario TA. At this, both groups were

using the plan-driven approach. As mentioned before, the decision about using

packages as advanced technique for design decision deferral was made by the

subjects themselves. The resulting distribution is visualized in figure 4.6. When

traveling through California, mC = 18 students used packages and n−mc = 10

students favoured the strict plan-driven approach whereas in Alaska, only mA =

10 students used packages and the remaining n − mA = 18 students did their

planning without them. The reason for this distribution can only be guessed.

We suppose that the fact that in Alaska many actions had to be booked in

advance deterred subjects from using travel packages due to the increased level

of complexity.

Obtained results are illustrated in figure 4.7 and 4.8. A table of all measured

values can be found in appendix A. These two plots show the gained business

values and the sums of project plan adaptations respectively at which light-grey

results are obtained using decision deferring techniques and dark-grey results

come from strictly plan-driven travelers. In this context, plan adjustments are

defined as the sum of pre-planning steps (action scheduling, sequence selections,

86

4.5. Experiment Results

using advanced techniques without advanced techniques
0 2 4 6 8 10 12 14 16

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

using advanced techniques without advanced techniques
0 2 4 6 8 10 12 14 16

0

500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

Figure 4.7.: Business value results from both travel scenarios

87

Chapter 4. Experiment

using advanced techniques without advanced techniques
0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

using advanced techniques without advanced techniques
0 2 4 6 8 10 12 14 16

0

5

10

15

20

25

30

35

40

45

Figure 4.8.: Project plan adaptation results from both travel scenarios

88

4.5. Experiment Results

Applied test Test value Threshold Condition Result

K/S-Test

KBV TC = 0.081 K0 = 0.257 0.081 ≤ 0.257 accept
KBV TA = 0.144 K0 = 0.257 0.144 ≤ 0.257 accept
KCFTC = 0.182 K0 = 0.257 0.182 ≤ 0.257 accept
KCFTA = 0.163 K0 = 0.257 0.163 ≤ 0.257 accept

F-Test

FBV TC = 1.413 F0,C = 3.722 1.413 ≤ 3.722 accept
FBV TA = 1.083 F0,A = 2.985 1.083 ≤ 2.985 accept
FCFTC = 2.148 F0,C = 3.722 2.148 ≤ 3.722 accept
FCFTA = 2.886 F0,A = 2.985 2.886 ≤ 2.985 accept

t-Test

TBV TC = 2.427 T0 = 2.056 2.427 ≤ 2.056 reject
TBV TA = 2.270 T0 = 2.056 2.270 ≤ 2.056 reject
TCFTC = 2.195 T0 = 2.056 2.195 ≤ 2.056 reject
TCFTA = 2.204 T0 = 2.056 2.204 ≤ 2.056 reject

Table 4.2.: Results of experiment analysis’ test series

sequence booking operations, etc.) as well as modifications of the plan (unbooked

action cancellations, shifting of actions, etc.) and cancellations of booked actions

during the journey. At this, all three addends are weighted with w1, w2, w3 ful-

filling the condition w1 < w2 < w3. This function produces a sensible measurand

for plan adjustments because it takes their temporal and financial impacts on

the overall journey into consideration.

We can now start our test series. In doing so, we distinguish between four data

sets: Business values BV TC ,∗
i , BV TA,∗

i and project plan adaptation frequencies

CF TC ,∗
i , CF TA,∗

i of both the Californian and the Alaskan travel scenario. First,

we conduct the Kolmogoroff/Smirnov Test as well as the F-Test to check

whether data satisfies preconditions of the t-Test. Their results are listed in table

4.2. In all four cases, the K/S-Test accepts the null hypothesis which states that

there is no statistical evidence (95% certainty) against the assumption that the

data emanates from a normal distribution. Considering the results of the F-Test,

we also get four positive results. In the case of the F-Test, this means that

again there is no statistical evidence (95% certainty) that the compared samples’

variances differ significantly from each other.

89

Chapter 4. Experiment

This information legitimates the use of the t-Test which we apply next to

the experiment’s data. As table 4.2 depicts, all four test runs reject their

null hypotheses with 95% certainty. As a consequence, we can reject the

experiment’s two main hypotheses HBV
0 and HCF

0 as well.

reject
(

HBV TC

0

)

∧ reject
(

HBV TA

0

)

=⇒ reject
(

HBV
0

)

(4.14)

reject
(

HCFTC

0

)

∧ reject
(

HCFTA

0

)

=⇒ reject
(

HCF
0

)

(4.15)

To represent variance, mean value and quantiles of the experiment’s data

graphically, two box-whisker plots are created as depicted in figure 4.9 and 4.10.

In a box plot, a box indicates the interquartile range IQR which is bounded by

the 25th and the 75th percentile. The vertical line in its middle is the sample’s

median whereas the dot stands for the sample’s mean value. The lines at both

ends of the box are called whiskers and end at the sample’s minimum and maxi-

mum respectively when there are no outliers. Outliers are values which are more

than 1.5 · IQR away from the median and are represented by single dots.

Figure 4.9 clearly underlines the statement made in section 4.2, claiming that

both game configurations are not equal. The average traveler gains 30.8% more

business value in Californian than he gets in Alaska. Besides that, Californian

travelers who use advanced techniques reach a 11.1% higher business value than

their strict plan-driven colleagues, and considering the Alaska travel scenario,

the difference is even 16.9%.

In figure 4.10, we notice that the variance of change frequencies in California

is much higher than the variance in Alaska. The reason for this phenomenon is

an event defined for the Californian travel scenario occurring quite often, which

causes a route closure. As a consequence, many actions have to be reordered and

changed to create a valid modified travel route. Generally, it can be observed

that journeys making use of advanced techniques perform significantly less plan

adaptations than journeys without such concepts. In the Alaskan travel scenario,

this can be explained by events causing quite a lot of actions to be unavailable.

In such a case, if the event affects an action inside a package, a traveler who

90

4.6. Risk Analysis and Mitigation

2.500 2.750 3.000 3.250 3.500 3.750 4.000 4.250 4.500 4.750 5.000 5.250 5.500 5.750

Alaska

California

without

advanced techniques

without

advanced techniques

using

advanced techniques

using

advanced techniques

Figure 4.9.: Box-Whisker plot of gained business values in both travel scenarios

applied the advanced approach can simply change the package sequence whereas

under certain circumstances, the strict plan-driven traveler has to perform several

adaptation steps depending on the significance of the unavailable action. In

numbers, strict plan-driven travelers need 27.3% more changes in Alaska and

38.3% more changes in California than travelers making use of tour packages .

4.6. Risk Analysis and Mitigation

This section discusses risks threatening the validity of our results and counter-

measures we took.

Validity of measurements is an important concept, independent from whether

it is in a testing situation or in an experimental situation [CS63]. Focusing on

the latter, validity is related to the control of secondary variables. Such sec-

ondary variables can have a significant influence on the measured parameters

and may mitigate the assumption that response variables are primarily depen-

dent on the independent variable. In the worst case, drawn conclusions become

invalid. In experimental situations, one distinguishes between internal and ex-

ternal validity. Internal validity is given when assumptions and claims made

91

Chapter 4. Experiment

20 25 30 35 40 45 50 55 60 65 70 75

Alaska

California

without

advanced techniques

without

advanced techniques

using

advanced techniques

using

advanced techniques

Figure 4.10.: Box-Whisker plot of project plan change frequencies in both travel scenarios

about the experiment in connection with dependencies between control and re-

sponse variables are correct. On the other hand, external validity deals with

the generalization of the experiment’s statements and investigates the question

whether implications can be established between the examined sample and the

targeted population.

4.6.1. Internal Validity

In the context of this experiment, a threat to internal validity is that the plan-

ning experience of participating students may differ individually. Students who

have already worked in a software development project and who have come in

touch with planning activities may be able to produce better results than their

colleagues with a lack of planning knowledge. Obviously, experience in the field

of journey planning can also be of use. This issue can be relativized by taking

the results from a sufficiently large number of students, which is guaranteed in

this experiment.

Further, problems regarding the use of Alaska may occur, which as well might

have an impact on the results. As a countermeasure, we prepend a short learn-

ing and familiarization phase to the actual experiment phase during which the

92

4.6. Risk Analysis and Mitigation

subjects study the program’s documentation, are introduced to its functional-

ity by a screencast specific for the particular approach and can plan a short test

journey (see figure 4.5 on page 82). This should prevent the subjects from misun-

derstanding functionality and should give them deeper insights into a simulated

journey’s devolution. Furthermore, useful tooltips are available during runtime

as well as Alaska’s extensive help system.

Another issue which may violate internal validity is the meaningfulness of

provided test scenarios. A possible problem might be that routes cannot be

taken because they simply last too long or negative events occur too frequently

prohibiting the traveler from finishing his journey. As a countermeasure, the

used scenarios have been carefully designed and tested by the authors as well as

test persons to minimize this kind of threat.

4.6.2. External Validity

Considering external threats, it has to be taken into consideration that the partic-

ipants are students and not professionals having several years of experience in the

field of project management. However, we can weaken this argument by referring

to other works stating that results of student experiments are transferable and

can provide valuable insights into an analyzed problem domain [Hou99],[Run03].

Second, one might put a journey as meaningful paradigm for a software devel-

opment project into question. Because of several parallels already discussed in

chapter 2 and the fact that a journey’s devolution indeed behaves quite similar

to that of a software project with regard to limiting factors and unforeseen inci-

dents, we think that this metaphor is legitimate. Furthermore, to mitigate the

threat that a game configuration is examined to which no appropriate counter-

part in the software project world can be found, we decided to use two different

configurations, as discussed in section 4.2 on page 77.

In addition to that, we can also mitigate the concern that our journeys are not

generalizable. The main arguments against it are the high degree of dissimilarity

of both game configurations as well as the strong correlation of their results.

93

Chapter 4. Experiment

4.7. Discussion

Our results indicate that the use of travel packages enable travelers to

reach a higher overall business value outcome. We think that the reason for

this phenomenon lies in the increase of flexibility caused by the use of packages.

They allow the traveler to react to bad weather conditions and unforeseen events.

Especially in the Alaskan travel scenario, these decision deferring techniques

proved to be advantageous.

One main reason for this can be found in Alaska’s weather characteristics. At

most locations, the weather behaves very unstable and hardly any trend is cog-

nizable. This causes the weather to be very hard to forecast and consequentially,

close estimations about it are possible not until the day before or even not until

the same day. As a result, the standard deviation of possible business values of

heavily weather dependent actions is high which prohibits the traveler to fully

rely on the calculated expected business values. Considering the situation in

California, the player is not confronted with that unstable weather conditions

and gets more significant weather trend information.

A second, even more profound reason, is the fact that Alaska’s configuration

contains five events of which two can cause conflicts in the travel plan. Further-

more, they can occur after each execution step with a probability of 5%. At this,

these two events only affect activities on which no other actions’ executability

depends. This makes such actions dropable or replaceable without further hav-

ing to worry about the travel plan’s consistency as a whole. In contrast to that,

though the Californian travel scenario has a lower number of events (four), one

of them turns out to be severe. A route can get closed with a probability of 10%

per execution step which results in most cases in a cascade of drop operations

because subsequent actions cannot be reached on time due to the unavailability

of short alternative routes. In such a situation, even the use of decision defer-

ring packages cannot satisfyingly compensate conflicts because their duration is

limited in this scenario to one day being too short to comprehend an alterna-

tive route. Furthermore, all packages have equal start and end locations also

prohibiting their adoption in such a case.

94

4.7. Discussion

Besides an increase of journeys’ business value, packages cause a reduction

of the number of project plan adaptations. This can again be explained

by referring to the advantages of flexibility that comes along with the adoption

of decision deferring mechanisms. Comparing both travel scenarios, we expected

that the difference would be bigger in Alaska than in California. After scanning

the data samples, we detected that more subjects using the strict plan-driven

method took the critical route than those who made use of packages. Precisely

speaking, during 28 games, this negative event occured 23 times. In addition

to that, in 17 games the route was chosen at which 7 times strict plan-driven

players got stuck wheres other subjects were only confronted with this problem

3 times. The impact of the previously mentioned event on the results may also

explain their relatively high variance in California.

To conclude the discussion, we summarize the main results: The use of design

decision deferring techniques in scenarios which are characterized by incomplete

knowledge and the presence of uncertainty

=⇒ does have an impact on the overall success of a journey (software project)

measured in positive travel experience of a traveler (business value of an

implemented system). The higher the degree of uncertainty is, the more

beneficial Late Binding and Late Modeling mechanisms turn out to be.

=⇒ does have an impact on the absolute frequency of travel plan adaptations

(project plan changes and corrections). Again, the higher the degree of

uncertainty is, the more plan adaptations are needed in strict plan-driven

methodologies. Late Binding as well as Late Modeling techniques can mit-

igate unforeseen environmental changes and as a consequence lower the

number of required plan adjustments.

Due to many parallels between journeys and software projects which were

discussed in chapter 2, we are convinced that the results listed above can also

be applied to the management of software projects. We think that decisions on

e. g. a feature’s implementation or on the use of a certain technology should be

deferred if a certain level of uncertainty is in play. The more uncertainty exists

and the less information is available, the more should a far-sighted manager put

95

Chapter 4. Experiment

a focus on flexibility and the disposability of alternatives. As our experiment

attests, such practices can enhance a software projects success and at the same

time, they reduce the number of steps needed to adjust a corrupted project plan.

96

Chapter 5.

Summary

This thesis investigates the impact of the adoption of design decision deferring

techniques in plan-driven software projects. More specifically, we inspect devia-

tions in a project’s overall business value which is defined as the cumulative sum

of implemented features’ values for the customer. Besides that, we investigate

how the absolute frequency of project plan adjustments is influenced by the use

of previously mentioned techniques.

We investigate whether the adoption of such techniques generally results in a

higher project’s business value due to an increase of flexibility. Furthermore, con-

sidering the number of project plan adaptations, we think that the use of design

decision deferring techniques allows the reduction of project plan adaptations at

which we again refer to flexibility coming along with such mechanisms as a main

reason.

While looking for sources of statistical material to verify our thesis, we soon

realize that we cannot investigate real world software projects for several reasons.

First of all, software projects in general last too long which would drastically

exceed this master thesis’ time frame. Another argument against inspecting

software projects is the fact that no company develops a system twice which

prohibits us from collecting complementary data samples.

As a consequence, we decided to consider journeys instead of software projects

because we think that the planning behavior of these tasks is very similar. As

discussed in detail in chapter 2, both scenarios demand for wise and foresighted

97

Chapter 5. Summary

planning behavior and both quite regularly have to struggle with unforeseen

events and insufficient knowledge about environmental parameters.

In a next step, Alaska ist developed, a travel simulator allowing subjects to plan

a virtual journey in different scenarios where they are confronted with similar

problems as those mentioned before. Design decision deferring techniques are

implemented in the form of Late Binding and Late Modeling packages which

represent ideas like interfacing and polymorphism in Object Oriented systems

as well as approaches in Workflow Management systems. For generalization

purposes, we defined two unequal scenarios – two journeys to California and

Alaska respectively. The former does not allow precise duration estimations of

tasks and contains a severe event forcing the traveler to make many adjustment

steps whereas the latter is characterized by very unstable and unpredictable

weather conditions.

We performed the experiment during three courses at the University with sub-

jects being Bachelor students of Computer Science. The obtained results confirm

our assumptions and underline the benefits of adopting design decision deferring

techniques. Based on this, we are convinced that not only travelers can benefit

from such methodologies but also software project managers as explained at the

beginning of this section. The more uncertainty there is in software projects, the

more flexibility is demanded of the project’s plan at which previously mentioned

techniques provide one alternative.

98

Appendix A.

Data of the Experiment

Business Value Change Frequency

BV TC ,+
i BV TC ,−

i BV TA,+
i BV TA,−

i CF TC ,+
i CF TC ,−

i CF TA,+
i CF TA,−

i

5304.1 4530.6 4411.7 2553.9 25 79 25 37

5094.8 5012.7 3565.4 2772.2 42 73 20 35

4525.8 4458.7 4766.1 3944.1 46 33 28 46

3807.1 4292.8 4740.0 3036.2 55 41 35 46

4795.1 4724.8 3403.5 3078.2 23 29 30 47

5482.1 5147.4 4307.3 3804.6 54 78 33 32

4942.8 4136.5 2937.1 4113.0 56 55 21 28

4091.3 3843.4 4645.7 3358.3 41 40 25 49

4664.6 3629.1 3078.2 4265.8 29 22 18 29

5359.5 4657.7 4264.4 4492.6 24 47 22 41

4305.8 3963.3 28 23

5455.7 3650.6 25 29

5820.3 3310.1 18 22

5631.9 2849.2 25 22

5329.7 4288.3 47 21

5154.7 3029.5 26 27

4549.7 3032.9 24 29

4550.0 2244.3 59 26

99

List of Figures

1.1. History of software project methodologies 19

1.2. Relationship between three important software project indicator

values . 21

1.3. Progression of the journey paradigm study 22

1.4. Software development from the perspective of a system of control

variables . 24

1.5. Comparison of traditional and XP cost curve 24

1.6. The cost of complexity . 26

2.1. Consecutive phases in the waterfall model 32

2.2. Comparison of phases in waterfall model and journey metaphor . 36

2.3. Two on one role mappings between software development project

and journey metaphor . 37

2.4. Two on two role mappings between software development project

and journey metaphor . 37

2.5. Possible states of a software use case 39

2.6. Mapping of use cases onto actions in a journey 40

2.7. Showcase of a a set of actions associated with locations 41

2.8. Cumulative distribution function of the symmetric Triangular dis-

tribution . 43

2.9. Devolution of a location’s weather with parameters tw = 0.2 and

sw = 0.6 . 43

2.10. Possible states of a travel action 45

2.11. Tour packages using late binding technique 48

2.12. Tour packages using late modeling technique 49

101

List of Figures

2.13. Business class diagram of a journey 51

3.1. Alaska’s plug-in composition . 54

3.2. Draw2d’s lightweight figures . 55

3.3. Visualization mechanism producing a graphical representation of

a model . 56

3.4. Delegation of Requests to EditPolicies for Command creation . 57

3.5. Three-layered architecture of Alaska 59

3.6. Sharing components to increase usability and to flatten the learn-

ing curve . 60

3.7. Sequence diagram of an Action move operation 62

3.8. Proxies acting as intermediates between configurations and instances 65

3.9. User interface model as an extension of the core model 66

3.10. Change-notification mechanism in the user interface model 67

3.11. Journeys and corresponding validation classes 67

3.12. Class diagram of the persistency layer 70

3.13. Flow of information in the persistency layer 71

4.1. Basic concepts of an experimental setup 74

4.2. Three different types of experimental design 76

4.3. This experiment’s setup . 78

4.4. Two phases of the experiment . 80

4.5. A familiarization phase prepended to the actual experiment run . 82

4.6. Distribution of subjects in both travel scenarios 86

4.7. Business value results from both travel scenarios 87

4.8. Project plan adaptation results from both travel scenarios 88

4.9. Box-Whisker plot of gained business values in both travel scenarios 91

4.10. Box-Whisker plot of project plan change frequencies in both travel

scenarios . 92

102

List of Tables

2.1. Comparison of elements in a software project and a journey . . . 50

4.1. Elements of this experiment’s design 78

4.2. Results of experiment analysis’ test series 89

103

Bibliography

[ABCP02] Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols.

Patterns for Effective Use Cases. Addison Wesley Professional,

2002.

[Bar07] Liz Barnett. Agile Survey Results: Widespread Adoption, Em-

phasis on Productivity and Quality. Agile Journal, 8:17–24, 2007.

[Bec00] Kent Beck. eXtreme Programming Explained. Addison-Wesley

Longman, 2000.

[BF00] Kent Beck and Martin Fowler. Planning eXtreme Programming.

Addison Wesley Longman, 2000.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and

Enhancement. Innovative Technology for Computing Profession-

als, 21:61–72, 1988.

[Bor77] Jürgen Bortz. Statistik für Sozialwissenschaftler. Springer Berlin,

1977.

[Bro90] Krishan D. Broota. Experimental Design in Behavioural Research.

John Wiley & Sons, 1990.

[BS02] Kurt Bittner and Ian Spence. Use Case Modeling. Addison Wesley

Longman, 2002.

[BT03] Barry W. Boehm and Richard Turner. Balancing Agility and Dis-

cipline: A Guide for the Perplexed. Addison Wesley Professional,

2003.

105

Bibliography

[Coc04] Alistair Cockburn. Crystal Clear – A Human-powered Methodol-

ogy for Small Teams. Addison Wesley Professional, 2004.

[Coh06] Mike Cohn. Agile Estimating and Planning. Prentice Hall Pro-

fessional, 2006.

[CS63] D.T. Campbell and J.C. Stanley. Experimental and Quasi-

Experimental Designs for Research. Houghton Mifflin Co., 1963.

[CT06] Yinong Chen and Weitek Tsai. Introduction to Programming Lan-

guages: Principles, C, C++, Scheme and Prolog. Kendall/Hunt

Publishing Company, 2006.

[CV98] Gerry Coleman and Renaat Verbruggen. A quality software pro-

cess for rapid application development. Software Quality Journal,

7:107–122, 1998.

[Dau07] Berthold Daum. Rich Client Entwicklung mit Eclipse 3.3 – An-

wendungen entwickeln mit Eclipse RCP, SWT, Forms, GEF,

BIRT, JPA. dpunkt.verlag, 2007.

[deM86] Tom deMarco. Controlling Software Projects: Management, Mea-

surement and Estimates. Prentice Hall, 1986.

[DFK+04] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and

Pat McCarthy. The Java Developer’s Guide to Eclipse. Addison

Wesley Professional, 2004.

[dG06] Szabolcs Mattias de Gyurky. The Cognitive Dynamics of Com-

puter Science – Cost-effective, Large Scale Software Development.

Wiley & Sons, 2006.

[Dij72] Edsger Wybe Dijkstra. The humble programmer. ACM Turing

Award Lecture, EDW340:859–866, 10 1972.

[DK02] Sarv Devaraj and Rajiv Kohli. The IT Payoff – Measuring the

Business Value of Information Technology Investments. Prentice

Hall Financial Times, 2002.

106

Bibliography

[dL03] Tom deMarco and Timothy Lister. Waltzing With Bears: Manag-

ing Risk on Software Projects. Dorset House Publishing Company,

2003.

[dR05] Jim des Rivières. API first. http://www.eclipse.org/eclipse/

development/apis/API-First.pdf, 2005.

[FB07] Bjorn Freeman-Benson. Eclipse Development Process.

http://www.eclipse.org/projects/dev_process/

development_process.php, 2007.

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Met-

rics: A Rigorous and Practical Approach. Thomson Computer

Press, 2 edition, 1997.

[GHJ94] Erich Gamma, Richard Helm, and Ralph E. Johnson. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison

Wesley Professional, 1994.

[Hes08] Wolfgang Hesse. Das V-Modell XT. eXamen.press. Springer

Berlin Heidelberg, March 2008.

[HHJHS97] J. Hagemeyer, T. Herrmann, K. Just-Hahn, and R. Striemer.

Flexibilität bei Workflow-Management-Systemen. In Software-

Ergonomie ’97 Usability Engineering: Integration von Mensch-

Computer-Interaktion und Software-Entwicklung, pages 179–190,

1997.

[Hog06] Robert Hogg. Probability and Statistical Inference. Pearson, 2006.

[Hou99] F. Houdek. Empirical-based Quality Improvement: Systematic

Use of external Experiments in Software Engineering. Logos-

Verlag, 1999.

[Hum89] Watts S. Humphrey. Managing the Software Process. Addison-

Wesley Professional, 1989.

107

Bibliography

[Hum94] Watts Humphrey. A Discipline for Software Engineering. Addison

Wesley Professional, 1994.

[Hum99] Watts Humphrey. Introduction to the Team Software Process.

Addison Wesley Professional, 1999.

[Jal02] Pankaj Jalote. Software Project Management in Practice. Addi-

son Wesley Professional, 2002.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-

fied Software Development Process. Addison Wesley Professional,

1999.

[Jon91] Capers Jones. Applied Software Measurement. McGraw-Hill,

1991.

[Kan84] Noriaki Kano. Attractive quality and must-be quality. The Jour-

nal of the Japanese Society for Quality Control, 1:39–48, 1984.

[KPP+02] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M.

Pickard, Peter W. Jones, David C. Hoaglin, Khaled El Emam,

and Jarrett Rosenberg. Preliminary guidelines for empirical re-

search in software engineering. IEEE Transactions on Software

Engineering, 28(8):721–734, 2002.

[McC96] Steve McConnell. Rapid Development: Taming Wild Software

Schedule. Microsoft Press, 1996.

[McC04] Steve McConnell. Code Complete. Microsoft Press, 2004.

[MDG+04] Bill Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, and

Phillipe Vanderheyden. Eclipse Development using the Graphical

Editing Framework and the Eclipse Modeling Framework. IBM

Redbooks, 2004.

[MSWW03] Michele Marchesi, Giancarlo Succi, James Donovan Wells, and

Laurie Williams. eXtreme Programming Perspectives. Addison

Wesley Professional, 2003.

108

Bibliography

[NR86] Peter Naur and Brian Randell, editors. Software Engineering, Re-

port of a conference sponsored by the NATO Science Committee,

Garmisch-Partenkirchen, October 1986. NATO Science Commit-

tee.

[NW04] Steve Northover and Mike Wilson. SWT – The Standard Widget

Toolkit. Addison Wesley Longman, 2004.

[Par71] David Lorge Parnas. Information Distribution Aspects of Design

Methodology. In IFIP Congress ’71, pages 339–344, 1971.

[PC86] David Lorge Parnas and Paul C. Clements. A rational design

process: How and why to fake it. IEEE Transactions on Software

Engineering, 12(2):251–257, 1986.

[PKB05] Manfred Precht, Roland Kraft, and Martin Bachmaier. Ange-

wandte Statistik. 7. Oldenbourg, 2005.

[PP06] Mary Poppendieck and Tom Poppendieck. Implementing Lean

Software Development. Addison Wesley Longman, 2006.

[Pry02] Kristi Pryma. Agile provides middle ground. IT World Canada,

5:15–19, May 2002.

[PSS81] Alan J. Perlis, Frederick Sayward, and Mary Shaw. Software

Metrics: An Analysis and Evaluation. MIT Press, 1981.

[RMHL91] Hans-Christian Reichel, Robert Müller, Günter Hanisch, and

Josef Laub. Lehrbuch der Mathematik 8. öbv&hpt, 1991.

[Roy70] Winston W. Royce. Managing the Development of Large Software

Systems. Institute of Electrical and Electronics Engineers, 8:1–9,

1970.

[Run03] Per Runeson. Using Students as Experiment Subjects: An Anal-

ysis on Graduate and Freshmen Student Data. In Proceedings 7th

109

Bibliography

International Conference on Empirical Assessment & Evaluation

in Software Engineering, pages 95–102, 2003.

[Sch04] Ken Schwaber. Agile Project Management with Scrum. Microsoft

Press, 2004.

[SG05] Andrew Stellman and Jennifer Greene. Applied Software Project

Management. O’Reilly, 2005.

[She00] David J. Sheskin. Handbook of Parametric and Nonparametric

Statistical Procedures. Chapman & Hall/CRC, 2000.

[Ste99] James Stevens. Intermediate Statistics: A Modern Approach.

Lawrence Erlbaum Associates Inc., 1999.

[Str00] Bjarne Stroustrup. The C++ Programming Language, volume 3.

Addison Wesley Professional, 2000.

[Tro00] William M.K. Trochim. The Research Methods Knowledge Base.

Atomic Dog Publishing, 2 edition, 2000.

[Ull07] Christian Ullenboom. Java ist auch eine Insel – Programmieren

mit der Java Standard Edition, volume 6. Galileo Press, 2007.

[vdAvDG+07] W.M.P van der Aalst, B.F. van Dongen, C.W. Günther, R.S.

Mans, A.K. Alves de Medeiros, A. Rozinat, M. Song, H.M.W.

Verbeek, and A.J.M.M. Weijters. Process Mining with ProM.

In Proceedings of the 19th Belgium-Netherlands Conference on

Artificial Intelligence (BNAIC), 2007.

[Zug08] Stefan Zugal. Agile versus Plan-driven Approaches to Planning

– Results from a Controlled Experiment. Master Thesis, Depart-

ment of Computer Science, University of Innsbruck, 2008.

110

