
Free University of Bozen/Bolzano
Faculty of Computer Science

Thesis

A Computational Forensic Methodology for Malicious
Application Detection on Android OS

Svetlana Voronkova

Submitted in partial fulfillment of the requirements for degree of
Master in Computer Science at the Free University of Bolzano

Thesis advisor: Prof. Francesco Di Cerbo

March, 2011

Contents

1 Introduction 8

2 State of Art 10

2.1 The concept of digital forensics . 10

2.1.1 The potential digital evidence in computer-related crimes 10

2.1.2 The forensic investigation process . 11

2.1.3 The most common digital forensics techniques . 12

2.2 The mobile forensics . 12

2.2.1 Traditional forensics challenges when dealing with mobile forensics 13

2.2.2 The mobile forensics methodologies . 13

2.3 Mobile device threats . 14

2.3.1 Smartphone malware review . 15

2.4 Short overview of most common mobile forensics tools . 17

2.4.1 MOBILedit! Forensic . 17

2.4.2 Oxygen Forensic Suite . 18

2.4.3 CellDEK . 19

3 Research Approach 21

3.1 Android OS . 21

3.1.1 Android security model . 21

3.1.2 Android’s issues with threats . 22

3.1.3 Existing Android forensics strategies . 22

3.2 The role of data mining . 23

3.2.1 Frequent set mining . 24

3.2.2 Applications’ categorization profiles . 25

3.2.3 Data preprocessing . 25

3.3 Apriori frequent set mining example . 27

4 Suspicious Application Detection Algorithm 30

4.1 The use case . 30

4.2 The pseudo-code . 32

4.3 The complexity . 33

4.4 Evaluation of Detection Algorithm . 35

4.4.1 Correctness evaluation . 36

4.4.2 Performance evaluation . 37

5 Proposed System Prototype 40

5.1 Outline . 40

5.2 Proposed system architecture . 40

5.3 AForensics for Android . 40

5.3.1 User interface . 41

5.4 The Web Forensics application . 42

5.4.1 User interface and functionality . 43

5.4.2 The reporting mechanism . 44

6 Related Works 45

6.1 Open Source Android Forensics application . 45

6.2 Permission based technology by SMobile . 45

7 Conclusions and future work 46

References 48

A APPENDIX 51

A.1 Flow chart of the Suspicious Application Detection Algorithm 51

List of Figures

1 Cumulative number of malware signatures [19]. 15

2 Smartphone malware effects [22]. 16

3 Example of a XML forensic report [20] . 18

4 Oxygen Forensic Suite [21] . 19

5 Data Matrix . 27

6 Main steps of Suspicious Application Detection Algorithm 31

7 The distribution of permissions in the classification model . 35

8 Execution time graphs form apps with 1-5 permissions (a), with 6-10 permissions(b), with
more than 10 permissions (c) . 38

9 Execution time comparison . 39

10 System Architecture . 41

11 AForensics main menu(a), AForenscis final report representation (b) 41

12 User notification . 42

13 Web Forensics, Menu . 43

14 Web Forensics, report . 44

15 The flow chart of the Suspicious Application Detection Algorithm 52

List of Tables

1 Set of classification profiles, defined on the basis of the relevant Android security permissions. 26

2 The example of applications with their permissions . 27

3 The set L1 . 28

4 The set L2 . 28

5 The set L3 . 29

6 The set L4 . 29

7 The correctness test for the applications with 1-5 permissions 36

8 The correctness test for the applications with 6-10 permissions 36

9 The correctness test for the applications with more than 10 permissions 37

Abstract

E-discovery includes any process of searching, storing and securing digital information. Digital forensics is one
of the least explored branches of e-discovery that examines how the extraction of digital evidence can aid in
crime investigations and identification of potential suspects. Due to the growing popularity of smartphones,
the field of mobile forensics - that is a part of digital forensics - gains more and more importance.

However, many existing mobile forensic techniques cannot be (yet) fully applied to the Android OS, as its file
system and architecture differ from already existing mobile platforms in many aspects. Moreover, Android
provides access to a wide range of libraries and sophisticated functions, that make the operating system very
attractive to malicious software creators and increases the probability of its use in various illegal activities.

This study presents a semi-automated mobile forensics methodology aimed at supporting a forensics examiner
in detection of suspicious applications such as the ones that are generally considered as malware, i.e. those
that might exploit sensible data stored on the mobile devices in a vulnerable way.

The technique is based on the features of Android’s security model, namely the set of standard permissions
exposed by each application. The methodology relies on a set of more than 13000 safe applications, hosted
on the Android Market and collected with AppAware, a specific tool for Android OS.

The proposed system includes a web-based application for forensic professionals that allows to perform the
detection of malicious applications on the chosen source and to manage the results of analysis. Another
component is an Android application that presents the shorten version of detection report to the mobile
device end user.

The paper presenting this approach was submitted and accepted to the 4th International Workshop on
Computational Forensics (IWCF), that took place in November 2010 [1]. The work presented has received a
positive feedback.

Acknowledgments

It is a pleasure to thank the people who made this thesis possible.

I am first of all grateful to my supervisor, Prof. Francesco Di Cerbo, for the patient guidance, encouragement,
advices and support he has provided throughout all the research and thesis writing period.

Further thanks go to Andrea Girardello and Florian Michahelles for providing the data without which this
research could not be carried out. In addition I would like to thank them for the contribution to the article
that we have presented in 4th International Workshop on Computational Forensics (IWCF).

I am thankful to the staff of Computer Science Faculty of Free University of Bozen/ Bolzano for their
competence and help during my Master Degree studies and this university.

I would like to thank also my patient thesis reviewers: Oana Tifrea, Andrea Janes and Sarunas Marciuska.
Their constructive comments and critics indeed helped to improve this thesis. Additional thanks to Oana
for being such a good flatmate, taking over all my domestic responsibilities and letting me to concentrate on
the writing.

The special thanks goes to Lijana Lubyte, who not only always kept me company whenever I needed a break
from studying or writing the thesis, but also has been a very good friend during past 3 years.

I wish to thank also my colleagues from “Eurac Research” ICT department for their support, understanding
and nice, friendly environment that they have created in the office and maintained during all these months.

Finally, I thank to my parents, my sister, all my friends in Lithuania (particularly to Veslava Filipovic and
Giedre Aniulyte), who despite the geographical distance were always nearby, listened to me and supported
in every decision I have taken.

1 Introduction

The cellular industry had grown and evolved rapidly it the past few years. As the capabilities and functional-
ity of mobile devices are constantly improving and new innovative technologies are adopted, more and more
people rely on mobile technologies. Nearly every small scale device includes features like high-bandwidth
Internet connection, location tracking etc. The amount and importance of personal data carried by PDA’s,
cellular phones and smartphones became similar to whose stored in computers and laptops. All these so-
phisticated capabilities and data in modern mobile devices make them very attractive to malicious software
developers, and increase the probability of their use in various illegal activities. This aspect is particularly
relevant for smartphones.

The growing interest in Android devices implies that also lawbreakers will start to use those devices for
their crimes and to design malicious applications to conduct frauds and other malicious activities. Evidence
discovered during the analysis of a mobile device involved in a crime, is usually very beneficial for the overall
investigation process, and has a high value in proving guilt or innocence of potential suspects in a trial. Here
evidence is interpreted as information of probative value that is stored or transmitted in binary form [3].
However, mobile forensics is somewhat challenging for the investigators, mainly due to the rapid change of
technologies and gaps in the law enforcement. Despite the fact that the digital forensics evolves very quickly
the forensics technologies and tools are far behind when it comes to mobile device investigation.

The key issue that makes mobile forensics so complex is that the cell phone market offers a variety of
hardware, equipped with different operating systems in different versions. Operating systems from different
manufacturers usually rely on different file systems, and have different memory management mechanisms.
Forensic tools face many problems handling devices that adopt a variety of standards and properties.

In this context, the Android Operating System for smartphones is relatively new, still rapidly evolving. The
market share of Android-based smartphones tends to grow constantly, and new Android tablets start to be
available as well. What is generally referred as ”Android OS” delivers a complete software suite for mobile
devices: an operating system, middleware and key mobile applications [34]. It enables the developers to take
advantage of all functionalities and features included in the handset, to create innovative and sophisticated
mobile applications. It also provides a convenient mechanism for application distribution Android Market:
software providers can publish their applications in a few steps, reaching very easily (potentially) all Android
users. At the same time, through Android market users can search for applications and install them in
seconds. As an open source operating system that relies on the Linux kernel, Android is considered to be
a secure platform. Nevertheless the Android malware market exists, even if it’s still in an infancy stage.
Several applications that have been detected on the Android Market only alert the need of forensics tools
oriented to this particular mobile OS.

It is more and more important that the forensic tools, that generally assist the examiner in her investigation,
are able to support the analysis of these devices. The aim of the following research is to design and develop
a semi-automated malware detection system for Android mobile operating system, in order to support the
activities of a forensics or security examiner.

In particular, the following study presents a web-based spyware and malware detection system that is going
to support forensic examiners in detection of suspicious applications, i.e. the ones that might exploit sensible
data stored on mobile devices in a vulnerable way. The developed method is not going to clearly determine
the maliciousness of a certain application, it simply signals the forensics analyst a situation that could require
additional specific investigations. The final decision as if to consider the analyzed application being suspicious
belongs to the examiner. Therefore the systems is semi-automated. The methodology has been trained on a
set that consists of more than 13000 applications hosted on the Android Market and collected with AppAware,
an Android application that captures and shares installations, updates and removals of Android third party
applications. Additionally, the system includes an Android application intended for mobile devices users. Its
aims are different, considering general public and forensics analists. In the former case, the application warns

Page 9 of 52

a user about possible malicious applications present in her mobile phone, leaving to her the decision whether
to remove such applications or not. In the latter, the application collects a list of installed applications and
their requested security permissions, in order to enable the analyst to conduct a forensics analysis on them.

In the following chapter of this thesis the background in digital and mobile forensics is presented. The further
chapters discuss the goals of the work and technologies analyzed. Then, it is presented the description of the
model, that is at the base of the methodology. The study proceeds by presenting the work accomplished,
conclusions and the future works on the studied field.

2 State of Art

2.1 The concept of digital forensics

Electronic discovery, also called e-discovery, refers to any process in which electronic data is sought, located,
secured, and searched with the intent of using it as evidence in a civil or criminal legal case [2]. The digital
forensics is one of the least explored branches of e-discovery. Generally this term is defined as follows:
“digital forensics also called computer forensics is simply the application of computer investigation and
analysis techniques in the interests of determining potential legal evidence. Evidence might be sought in
a wide range of computer crime or misuse, including but not limited to theft of trade secrets, theft of or
destruction of intellectual property, and fraud” [4].

The core goals of the digital forensics are “the preservation, collection, validation, identification, analysis,
interpretation, documentation and presentation of after-the-fact digital information derived from digital
sources for the purpose of facilitating or furthering the reconstruction of events as forensic evidence” [4].

In the face of the increasing amount of cyber-crimes and computer abuses encountered today the digital
forensic science is rapidly gaining the importance. The evidence gathered using the computer forensics
methodologies has a great value in the court and helps to solve computer-related cases. Moreover sometimes
such methods also clarify certain details of cases that not necessarily involve a computer crime. Computers
are not the only means by which crimes might be conducted. In the typical investigation any kind of digital
devices such as PDA or smartphones, routers,modems, external storage/flash drives, etc. can be examined.
However, due to the rapid growth of this relatively new discipline many of the existing laws, legal precedents,
and practices related to computer forensics have many gaps and do not cover properly all the cases that
involve digital devices.

2.1.1 The potential digital evidence in computer-related crimes

Digital evidence is becoming a routine part of criminal cases. Nearly 85% of the current cases in one or
another way are dealing with the evidence retrieved from digital devices [5]. The potential computer evidence
is considered to be any digital information that might be related to the investigated case. Typical media
that may hold such evidence are computer, notebook, CDs, DVD’s, flash drives as well as Smartphones,
IPods, cell phones, digital cameras, and other kinds of electronic devices. The media containing an evidence
related to the case is not necessarily found on the crime scene, it can be retrieved also from different location.
According to a guide by the US Department of Justice, any electronic data that is potential evidence is often
not obvious. Moreover it has the possibility to transcend borders with ease and speed, is fragile and can
be easily altered, damaged, or destroyed. The electronic data is also time sensitive [6]. Therefore, in order
to be able to prove the origin of the information, the evidence has to be handled with a great care. When
dealing with digital information as a potential evidence every forensic specialist must respect the 3 following
guidelines:

• Do not alter or damage the original.

• Proof that your recovered evidence is the same as the original.

• Inspect evidence without altering it.

There are two main types of data that are collected as an evidence during the forensics process – persistent
data and volatile data. The example of persistent data is the data stored on a hard drive or another
digital media and which is preserved when the digital device is shut down. The volatile data refers to any
type of data that is stored in memory (cash, RAM) or exists in transmission and is lost when the device is

2.1 The concept of digital forensics Page 11 of 52

turned off. It is essential to an investigator to know in which case what kind of data should be captured, as
often the attempt to capture one type of data may lead to the lose of the other type of evidence.

2.1.2 The forensic investigation process

Computer-related crime is a crime that encompasses all of those illegal activities that are committed by or
with the aid of a computer or an information technology Additionally, computer-related crimes include the
activities where the computers are the target of the criminal enterprise. [7]. Therefore there are distinguished
two types of investigations where the computer forensic methodology can be used:

• when the device was used as an instrument to commit a crime e.g. malicious software, hacking;

• when the computer is a target of a crime e.g. fraud by means of Internet.

In the first case the investigator is not necessary present when the machine used in the crime is switched off
and the investigation will mostly focus on the persistent data. In the contrary, the digital device’s involvement
as a target issues the capturing of the information present in RAM and running process , i.e. volatile data.
Regardless of the situation, the techniques, methodologies and procedures used are the same. The typical
digital forensic investigation process is based on the following phases:

• preservation;

• data collection;

• examination;

• analysis;

• reporting.

Preserving the information in the original state is the most important phase of the investigation process,
as it ensures the integrity of the information collected on the crime scene and provides as much as possible
relevant data to the next steps of the overall process. This is analogous to taking photographs, fingerprints,
or blood samples from a crime scene. The preservation involves operations such as evaluation of the risk of
turning off the computer, preventing people from using computers during the data collection, disconnecting
the device from the network.

The data collection phase includes searching for evidence in the sources that had some contribution to the
committed crime. The investigator should assure that no data was changed during the evidence gathering
and examination phases. Moreover it’s very important to maintain properly the custody chain , which means
documenting all the evidence found and all of the software and versions used in its extraction[8]. Having
such an up to date documentation makes the evidence creditable in court.

The amount of data collected during the data collection phase is usually huge. Therefore in order to extract
from this data the information of particular interest, the forensic examination methods and techniques
need to be applied.There are two main ways in which the collected data are examined: live and dead analysis.
Dead analysis is a traditional data examination where the investigations are performed on hard drive or
another data, after the device used in the crime was shut down. Nowadays the live analysis is becoming
more and more popular. It is suitable when the attack was performed using just device’s memory (RAM),
but not touching any data on the hard drive.

Once the relevant information has been extracted, the analysis phase has to be performed. The main goal
of the analysis is to derive valuable information that addresses the questions that initiated the investigation
process.

2.2 The mobile forensics Page 12 of 52

The overall forensic process is concluded with the report. Report can be written or oral. The investigator
should pay attention that it would be written in a clear way, using natural language so that individuals
without a background in Computer Science would be able to understand it.

2.1.3 The most common digital forensics techniques

The typical computer related crimes that require digital data examination can include hacking, phishing,
sexual abuse, various frauds, as for example credit card frauds, hidden steganographic data transfers and so
on. Sometimes the advantage of computer forensics techniques might be taken while dealing with the cases
not directly related to the digital devices, as homicide or theft. However, the investigators usually apply the
same forensic techniques to the both types of crimes. The most common techniques recently used in the
digital forensics investigation process are: IP Address and Email tracing, file structure and storage media
analysis, and recently also GPS data analysis.

IP Address and Email tracing are the methods that are applied when the examiner has to investigate
the cases that involve use of Internet and computer networks. Internet Protocol Address Tracing means to
trace an IP address right down to its real address. Email Address Tracing refers to the situations when it
is important to know the exact location of the email sender. The tracing operation mainly focuses on email
header analysis as it includes the details about source machine IP address, real email server from which the
email originated, the date and time.

Other digital forensics techniques are the ones that involve computer system analysis, mainly file system
analysis and storage media examination. When performing file structure analysis the investigator usually
looks for the files that may be encrypted or hashed. Generally, the automated tools are used to process and
decrypt such files. However in some special cases also manual interference might be required. Yet different
actions are performed during the physical or removable disk analysis. These disks might have been
erased and it can become almost impossible to recover data from it. Therefore data recovery tools and
methods have to be adopted by investigators when dealing with physical media.

Last but not least, in some circumstances, it can be interesting to know where a certain digital device has
been in a certain moment, therefore also GPS-enabled mobile phones can provide valuable information to
answer the question. Modern smartphones have navigation-support software and in some cases it is possible
to find past positions in their caches.

2.2 The mobile forensics

The mobile forensics science, as a part of digital forensics, focuses on recovering digital evidence from small
scale digital devices under forensically sound conditions using accepted methods [9]. The phases of digital
forensics investigation for mobile devices are the same as for computers: data collection, examination, analysis
and reporting. However, the mobile forensics is somewhat challenging for the investigators, mainly due to
the rapid change of technologies and gaps in the law enforcement. Despite the fact that the digital forensics
science evolves very quickly the forensics technologies and tools are far behind when it comes to the mobile
device investigation. Unlike the computers, mobile devices vary in their standards, use of operating system
and hardware, filesystem and memory management [10]. One of the key issues that makes mobile device
forensic more complex than traditional computer forensic is the constant activity of the mobile device.
The information stored on the device tends to change continuously making the reproduction of the exact
evidence very complicated [10]. Moreover, the mobile devices also have a better memory access control than
the computers.For these reasons the traditional digital forensic techniques can be sometimes ineffective for
the data extraction from mobile phones. Another key difference between computer and mobile forensic is
the operating system and the filesystem. The cell phone market offers a variety of operating systems and
their versions. The OS from different manufacturers use filesystems that differ from the standards used in

2.2 The mobile forensics Page 13 of 52

computers. The forensics tools face many problems handling all these cases.

The computers usually have a certain standards and requirements for hardware, whereas the hardware ar-
chitecture of mobile devices differs from model to model. The operating systems are highly customized by
the mobile phone producers in the way that they would correspond to the hardware of the certain phone
model and additional devices such as digital camera, GPS, wireless network connection [11]. Therefore even
the same versions of OS might support different hardware architecture for different manufacturers. Lately
becoming very popular smartphones perfectly reflect all above mentioned issues.

2.2.1 Traditional forensics challenges when dealing with mobile forensics

The standard digital forensics techniques usually differ from whether the device of interest if found turned
on or turned off. The same rule applies also tho the mobile device investigation process. However many
difficulties and challenges are encountered using these techniques when dealing with small scale devices. The
off-line analysis of mobile phones gets more complex than computer examination due to the fact that mobile
phones contain an internal clock, which continuously changes data stored in the cell phone’s flash memory.
Therefore it is impossible to reproduce a consistent bit-to-bit image of the entire memory as is it is done
during the computer examination.

Considering the live forensics - the technique that applies to the switched on devices, the connectivity of
the phone plays a vital role [12]. It is necessary to keep device isolated from any networks during the
analysis phase, otherwise it may lead to the loss of some information that could be beneficial for the running
investigation. The preservation of this requirement is very complicated because of the expanded connectivity
of small scale devices i.e. the possibility to deal with cellular network and through it with Internet services.

2.2.2 The mobile forensics methodologies

The mobile device is a combination of a handset, a SIM card and often also a memory card. The mobile
forensics methodologies focus though mainly on two different areas: SIM card forensics and memory forensics.

The Subscriber Identity Module (SIM) card is a smart card that contains personal user information
as well as the network data that is necessary to authenticate and identify subscribers on the Network. Each
SIM card is secured with the 4 digits personal identification number(PIN) that must be entered once the
mobile device is turned on. The typical data that can be found during the SIM card investigation process
includes: SIM card serial number, details of previous calls made, the date and time, received and missed calls,
received, saved or deleted SMS messages. Additionally, the SIM card stores also the contact list, the phone
book, calendar entries, and images [13]. For the SIM card forensics examination it is essential to prevent the
connection to the any mobile phone network, as this may result in overwriting data of a great importance
to the case.The first step to be taken in such situation is removing the SIM card from the analyzed device
and making an image or a copy of it. The action is performed using special device that copies the contents
from the SIM card of interest to the blank card while not allowing it to connect to any networks. The
analysis is then carried out on the freshly copied card so that the original data could not be damaged or
altered in any other way. This phase is usually performed via PC applying standard forensics data extraction
methodologies. The following types of the SIM card analysis might be accomplished by a forensic investigator
[14]:

• Integrated Circuit Card ID (ICCID) : each SIM card is internationally identified via its ICCID. This 18
or 19 digit number is stored on the SIM. Knowing this number the analyst can identify the international
location of the device.

• International Mobile Subscriber Identity (IMSI): the number that identifies the individual operator

2.3 Mobile device threats Page 14 of 52

network, which is the network the SIM card works on. The network provider communicates with the
SIM card via this number and it is used to attach phone calls to the SIM.

• Mobile Country Code (MCC): the three digit number is used to identify the country from which the
SIM card is originated.

• Mobile Network Code (MNC): the code that is used in conjunction with the above mentioned MCC to
identify the Network provider to which the SIM card belongs.

• Mobile Station International Subscriber Directory Number (MSISDN): the 15 digit number which
uniquely identifies the subscription in either a UTMS or GSM network.

• Abbreviated Dialling Numbers (ADN): a list of numbers that the user of the SIM card stores to have
an easy access to the numbers to dial, basically this is the user’s contact list. From the contact list the
analyst can identify the incoming and outgoing calls to the certain phone numbers as well as the time
and date of any calls made or received.

• Short Message Services (SMS): commonly known as text messages. Depending on the SIM card the
analyst may get the information about sent/received/deleted messages.

The goal of memory forensics is to extract data stored in the flash memory of the cellular phone and to
find out the meaningful evidence [15]. The memory forensics is divided into the physical data analysis and
logical data analysis. The logical data acquisition approach focuses on the extraction on data carried out
by flash memory of the mobile device on the filesystem level. The analysis is accomplished via computer
with the use of a forensic tool that is communicating with mobile phone system. As in the case of SIM card
analysis the copy of entire filesystem is done to guarantee the integrity of evidence and not to irreversibly
alter the important information. The data that can be extracted applying the logical analysis varies with the
forensic tools used, but typically include SMS, MMS, call registers, videos, pictures, audio files and calendar
entries.

When performing the physical data analysis the memory of the cell phone is seen in its raw form. Physical
data acquisition approach implies the extraction of full memory image bit-by-bit excluding the expandable
memory. The physical level access method can enhance the recovery rate for deleted data in comparison
with the logical level access method [15].The physical data analysis is performed using flasher tools, JTAG
tests access, or by removing a flash memory from a mobile device and reading its contents with a memory
chip reader [16]. The flasher tools are good for making the memory image as they have a simple hardware
connection with the cell phone. The second approach - JTAG emulator dumps a whole physical memory and
produces a complete mobile device memory image that is ready for the forensics analysis. If the analyzed
device is damaged or by any other reason none of the above mentioned methods can be applied the memory
cab be read using a memory chip reader.

2.3 Mobile device threats

As the popularity of mobile devices and especially smartphones among customers increases the devices and
their OS are more and more often exploited by malicious software developers. Malicious software is a
software that attempts to spy, use, damage or destroy a digital device or information stored on it without
notifying the user. The malicious software or malware is divided into groups with respect to the way it may
harm the system. By today there exist the following categories of malicious software: Trojans, spyware,
rootkits, adware, worms and viruses. Although the detection, analysis and prevention of malicious software
are the mobile phone security tasks, the forensics and security science are strongly related when it comes
to the smartphone or other small scale device analysis. The reason for such a relation is a new emerging
threat - the malicious applications that steal, monitor or in any other way exploit the user’s sensitive data
stored on the device. The sensitive data in this case are contact lists, SMS messages, call history, location

2.3 Mobile device threats Page 15 of 52

tracking, account credentials etc. One of the main groups of such applications are the ones that use a digital
steganography in order to obtain user’s sensitive data. Steganography is the science of hiding data within
data. The information might be hidden in many different ways from a message encoded in the second letter
of each word of a large body of text to such sophisticated techniques as hiding the sensitive information
within image, audio or video files [17].

2.3.1 Smartphone malware review

According to the mobile malware evolution report by Peter Gostev from Kaspersky Lab [18] the appearance of
the first malicious software for smartphones is dated for June 2004, which overlaps with increasing popularity
of small scale devices. The worm Caribe released by a professional virus writing group 29A was targeting a
Symbian OS – the most popular mobile platform at that time. Its main task was to check autonomously for
bluetooth devices in range and establish a connection to devices with activated bluetooth in order to transmit
an infected Symbian OS Installation System (SIS) file. After the execution of transferred.sis file Caribe was
installing and repeating the same behavior on the newly infected mobile device [18].

The latest research of Kaspersky Lab presents the following mobile malware evolution statistics:

Figure 1: Cumulative number of malware signatures [19].

The chart (figure 1) indicates the first notifiable growth in malicious software evolution for years 2005-
2006. It it very likely that such an increase is related to the introduction of a certificated-based signing of
applications for Symbian OS. Starting from the Symbian S60 3rd Version, which is currently used on most
smartphones the application certification became mandatory thus significantly reducing the number of new
malware appearances for next two years. The number of new malicious mobile software starts to increase
again in 2008 and grows till now. This fact is mostly correlated with the launch of new mobile platforms:
Apple’s IPhone and Google’s Android OS. Both platforms use an online store for distributing the software.
This approach is relatively new in the world of smartphones, therefore the malware propagation on these
platforms is still basically not investigated field of research. However, the first malware identification cases
on both Android and IPhone alert about the emerging vulnerability of these platforms and rise the need of
the tools that would prevent their exploitation by malicious software developers.

Depending on the nature on the mobile threat and the way it infects the device different malicious activities
may occur on the phone. The Dai Labor researchers of the Technical University of Berlin suggest the following

2.3 Mobile device threats Page 16 of 52

categorization of the malicious activities based on their collected data [22]:

Figure 2: Smartphone malware effects [22].

Most of the malicious applications simply manipulate the files stored on the device or attempt to disable
other installed applications. The other part of malicious activities affects the sensitive data stored on the
devices, mainly accesses, transmits or in any other way manipulates the private data of the users.

Due to the rapid evolution of mobile devices and their advanced capabilities the distinctions between them
and the computers has been significantly minimized. The users more often choose a smartphone over the
PC to perform such activities as emailing, data storing, Internet browsing, banking etc. Therefore there
is a higher chance that small scale device might be affected by the same type of malware that exists for
traditional computers. The United States Computer Emergency Readiness Team proposes the following list
of the mobile threats that includes the types of malware typical for computers as well as the ones that
particularly hit smartphones [23]:

• social engineering;

• exploitation of social networking;

• mobile botnets;

• exploitation of mobile applications; and

• exploitation of e-commerce.

The malware spreading trough social engineering is the most known method widely used to infect the com-
puters and now as well the smartphones. The social engineering attack is defined as “an attack, where an
attacker uses human interaction (social skills) to obtain or compromise information about an organization
or its computer systems”[24]. The most popular social engineering forms that may affect small scale devices
are phishing, vishing and smishing.

The most common phishing activity is an email pretending to be from a valid financial or e- commerce
provider. The users are typically manipulated to provide their personal information or financial data. The
example of such phishing attack on smartphones is an Android application called “DROID09” that was
discovered on Android Market in January, 2010. The application “pretended” to be a useful online banking
utility but turned out that it was actually stealing online baking credentials of the users. Indeed it is not
known how exactly the application was performing the fraud[25].

2.4 Short overview of most common mobile forensics tools Page 17 of 52

Vishing stands for “Voice Phishing”. As the phishing it tricks the individuals into revealing their financial or
personal information just that the attacks are carried out adopting voice technologies. Smishing approach
intends to manipulate the users via SMS and text messages.

The growing trend of social networking sites such as Facebook, MySpace or Twitter has brought a new way of
mobile device exploitation. The information sharing among user via social networks is usually unwarranted
and not completely secure, therefore there always exists a risk that the device might get infected

A botnet is a set of compromised computers or bot clients running malicious software that enables a “both-
erder or “botmaster to control these computers remotely[23]. Due to the good integration with the Internet
the bontents are starting to be applied also to the mobile networks. The security researchers Derek Brown and
Daniel Tijerina with Tipping Point’s Digital Vaccine Group have built an intentionally malicious application
that was able to connect nearly 8,000 iPhones and Android Smartphones into a mobile botnet. The created
application simply links to the Weather Underground Website and provides weather forecast information to
its users. However in the background the app is actually gathering information on the users who downloaded
it, including their GPS coordinates and phone numbers.[26]. The experiment made by the researches only
proves how easy it is possible to exploit the mobile devices via botnet.

The innovative approach of application distribution via online stores used by Android and iPhone also has
its vulnerabilities. Potentially anyone can place his developed application on the online store and make
it available to the thousands of users. Although the applications are accepted only after review process,
there is no guarantee that the malware may not simply bypass the criteria set by reviewers and be placed
on the market. The good example is the “aka Tap Snake” application identified on Android Market. The
application is capable of sending out a users GPS location via HTTP POST to the site gpsdatapoints.appspot.
com/addpoint. The information can then be retrieved by a remote user using another “app aka GPS SPY”
[27].

Another trend that started quickly to migrate to mobile devices is e-commerce. The mobile devices are used
not only to look up the product information but also to make the orders, purchases and complete other
financial operations. Such an integrity of mobile devices is very welcomed by the users as it provides them
with the possibility to accomplish the purchase or to make a credit card payment from any location and at any
time. There exists a set of different applications for smartphones that accept payment or even swipe credit
card data. However such application might be as well exposed by the malicious software writer applying
“skimming”. The skimmig is the illegal copying of information from the magnetic strip of a credit card in
order to gain the access to the bank account of the victim.

2.4 Short overview of most common mobile forensics tools

The market offers a very wide range of different tools for secure data extraction, evidence collection, data
aquisition and analysis from the mobile devices. In this section, we discuss some of the most known and
commonly used tools and software solutions of mobile forensics. Some more forensic software solutions are
discussed in [28].

2.4.1 MOBILedit! Forensic

The MOBILedit! Forensic is considered to be one of the most trusted and reliable mobile device investigation
tools used in 70 different countries. It enables the full control of the mobile device from PC via cable, IrDA
or Bluetooth allowing to view the contents of the phone, perform searches and complex synchronizations,
make full data copy or send SMS or MMS messages. In addition, the explicit forensic device investigation
is offered. MOBILedit! Forensic collects all possible data stored on the small scale device and generates an
extensive and completely secure report onto a PC. The software handset also allows the user to customize

2.4 Short overview of most common mobile forensics tools Page 18 of 52

the final report adapting it to the certain rules or needs of the judicial system. The reporting system is very
flexible as it supports different languages as well as variety of formats such as MS Word, XLS, and XML.

Figure 3: Example of a XML forensic report [20]

The MOBILedit! Forensic supports a broad range of mobile phones and due to the rapid growth of the
mobile device market the list of supported mobile phones is constantly updated. As a reliable software
solution MOBILedit! Forensic corresponds to the judicial forensic standards. The tool prevents any changes
in the device ensuring the correctness and validity of the collected evidence. Moreover all data blocks, such
as the SMS are protected by the MD5 hash algorithm.

According to the Cell Phone Forensic Tools analysis report by US National Institute of Standards and
Technology Moibiledit! Forensics performs best on logical data acquisition level and manages the following
type of data: phone and subscriber information, phonebook, SIM phonebook, missed calls, last numbers
dialed, received calls, inbox, sent items and drafts. Moreover the tool gives examiners the ability to acquire
SIM card data using a PC/SC-compatible reader [29].

2.4.2 Oxygen Forensic Suite

The Oxygen Forensics Suite is one of the leaders in the mobile device investigation tools with the main
focus on smartphones. The tool supports more than 1600 different mobile device models including the the
newest Symbian OS, Nokia S60, Sony Ericsson UIQ, Windows Mobile 5/6, Blackberry, IPhone and Android
Smartphones. The forensic version of Oxygen Suite is available for police departments, law enforcement units,
and all government services that wish to use the software for investigative purposes. The Oxygen Forensics

2.4 Short overview of most common mobile forensics tools Page 19 of 52

Suite enables the communication with the investigated device via cable, IrDA and Bluetooth in the same
way as The MOBILedit! Forensic does.

Figure 4: Oxygen Forensic Suite [21]

The Software interface is specially designed for forensic analysis, data search and reporting. Depending on the
model of the examined device there can be retrieved the basic information such as SIM-card data, contacts
list, outgoing/incoming calls, standard SMS/MMS/E-mails, calendar, text notes, pictures and videos. Besides
the standard smartphone data the tool offers the extraction of unique information such as SMS messages
deleted from phone memory, extended phonebook information which includes contact photos, caller groups,
speed dials and last contact modification date and time, MMS and E-mail attachments, GPS positioning
data etc. In addition, the tool offers the reporting with the support of the most popular file formats such as
XLS, RTF and PDF.

2.4.3 CellDEK

The CellDEK is the first portable handset data extraction kit designed for use at the scene of a crime and all
working environments associated with on-going investigations. It is compatible with 2000 of the most popular
cell phones and PDA’s, including Blackberrys. CellDEK now is providing the support also for Apple iPhone,
iPhone 3G and iPod touch devices and for satellite navigation devices such as TomTom, Garmin. As the
above discussed tools The CellDEK unit provides examiners with the ability to connect to the investigated
device via a cable, Bluetooth or IrDA connection. The toolkit contains an embedded touch-screen PC, data
cables for different phone manufacturers, PC/SC SIM card reader and a write-protected flash memory card
reader.

The CellDEK software is intuitive and no specialist skills are required to operate the system. The data
extraction customization is also offered by the system so that the examiner can select himself which data

2.4 Short overview of most common mobile forensics tools Page 20 of 52

actually to acquire. The following data can be extracted using the toolkit : Handset Time and Date, Serial
Numbers (IMEI, IMSI), Dialed Calls, Received Calls, Phonebook, SMS, MMS messages, Deleted SMS from
SIM, Calendar, Memos, To Do Lists, Pictures, Video, and Audio.

Cell Phone Forensic Tools analysis report by US National Institute of Standards and Technology indicates
CellDEK as a reliable forensic toolkit that can be sufficiently used for extensive information acquisition
[29]. The main advantage of the tool is the ability to produce the report that includes detailed log of the
acquisition process, all commands sent to the target device and all data received from the target device. Such
a functionality allows the examiner to recover the data or the set of previously performed actions in case of
the acquisition process failure. However CellDEK does not have a built in search functionality. The search
in the generated reports can be performed applying some external third party tools.

3 Research Approach

The aim of this study is to design and develop a mobile forensics oriented, semi-automated malware detection
system for Android OS based on the features of Android’s security model and the application of known data
mining classification technique – Frequent Itemset Identification. The methodology relies on the analysis
of a set of more than 13000 safe applications hosted on the Android Market.

3.1 Android OS

Android is an operating system for mobile devices that includes middleware and key applications, and relies
on the modified version 2.6 of the Linux kernel. It was initially developed by Android Inc., a company
later purchased by Google, and lately by the Open Handset Alliance [30]. Android is an open development
platform that provides to the developers the ability to create an advanced applications using any kind of
resources of the platform such as hardware, services, databases etc. Each Android application runs in its
own process on Dalvik, a custom virtual machine designed for embedded use. The handset also provides
a convenient mechanism for application distribution – the Android Market, where software providers can
publish their applications, making them available to the smartphone users.

3.1.1 Android security model

Android’s security model combines the standard Linux OS features that control the security at the process
level and the permission based mechanism. The permission [34] is a right that a developer has to declare
in its application to be able to interact with the system or access the components of other applications.
As each program runs in a separate process, typically applications neither read nor write each others data
or code and sharing data between applications must be done explicitly. However, after the declaration of
permissions an application has access to the protected features of Android to which the permission refers. A
permission is generally simple text string assigned to a predefined list of functionalities of the system, i.e.,
“INTERNET” to connect to the Internet, “READ SMS” to read SMS messages, and so on. Permissions have
to be statically defined in the application package so that during the deployment the user could grant them
to the application, or abort the process. For example, the permission that allows the application to write the
data to the SD card looks as presented in the listing 1.

1 <permis s ion xmlns :andro id=” h t t p : // schemas . android . com/apk/ r e s / android ”
2 android:name=”com . i s e c p a r t n e r s . android .READ CONTACTS”
3 a n d r o i d : d e s c r i p t i o n=” @str ing / a c c e s s c o n t a c t s f o r r e a d i n g ”
4 a n d r o i d : p r o t e c t i o n L e v e l=”normal”
5 a n d r o i d : l a b e l=” @str ing / a c c e s s p e r m l a b e l ”>
6 </ permis s ion>

Listing 1: An example of an Android OS security permission

Each permission contains the following characteristics: name, description, label and the protection level.

Generally Android provides a list of standard permissions that grant the applications access to such function-
alities as Internet, SMS/MMS messaging, contacts, external memory card etc. However, the developers are
free to create their own permissions making some particular component available to the other applications
installed on the device.

As mentioned, the role of the permissions is not only to grant the access to the system’s components but
also to inform the user while installing the application about the features that it is going to use. Such
notifications allow the user to evaluate the dangerousness of each application and accept it or dismiss. Once
the application is installed its permissions cannot be changed.

3.1 Android OS Page 22 of 52

3.1.2 Android’s issues with threats

With the growing trend of smartphones the focus of malicious software developers has broaden from computer
based malware to the one committed to harm smartphone systems including the Android OS. As an open
source handset that relies on Linux Kernel, Android is considered to be a secure platform. Nevertheless
the Android malware market is still in an infancy stage, the detection of some malfunction applications on
Android Market had proven that the devices can be easily exploited by attackers.

Recentely, a report of SMobile [33] considering 48694 applications, found 29 of them to be possibly spyware
available on the Android Market, while for other 383 it is possible to access authentication credentials
stored on the mobile phone.The presented analysis has some commonalities with the approach adopted by
SMobile, because both of them use applications’ permissions as a privileged source of information on mobile
applications. The report of SMobile confirms the urgency of developing anti-malware systems and checks, as
well as forensics methodologies.

The example of Android malware is an application called “Android FakePlayer” that was discovered in August
2010 [32]. The application is distributed as a simple media player application, however in the background
it acts as Trojan horse and attempts to send SMS messages to predetermined numbers without the user’s
knowledge or permission. The Trojan sends the SMS message with the texts “798657” to the premium
numbers 3353 and 3354. Despite the fact that the risk rating of the “Android FakePlayer” was evaluated as
low, it results in a extra charge of the users according to the respective number’s rate.

However, in order to develop efficient forensics tools there should be a clear definition of what kind of
applications should be considered as suspicious in Android. Basically, all applications that have the ability to
spy the users sensitive data in a specific way by hiding them and transmitting it outside the local system can
be considered as malfunction. Some mobile forensics tool developers suggest to follow the rule of thumb and
to regard as spyware the applications that allow 3rd party to spy on the activities of the user and that hide
themselves from the 3rd party at the same time. Generally, if the user cannot determine the functionality of
the certain application during its running time or cannot look up its name and icon in the applications list,
such application is considered to be a suspicious application [33].

3.1.3 Existing Android forensics strategies

It is obvious that data extraction task is one of the most critical and sensitive in mobile forensics process and
the security framework created by Android developers makes it even more complicated. The protection of
the applications and the data is achieved by combination of two enforcement mechanisms: one at the system
level using standard Linux operations and at the inter-component communication level either through the
“permission” mechanism or through per-URI permissions. The critical point for the data extraction task
from Android devices is that each Android application runs as a unique user identity and by default has no
permission to perform any action that could have impact on the other application, the system or any other
data on the device. The application’s process is as a “sandbox”, meaning that all the data that application
collects and stores is isolated so that other processes cannot see or use it. So far there are four different
techniques available for Android forensics [35]:

• SD Card analysis;

• logical acquisition;

• physical acquisition;

• chip-off.

3.2 The role of data mining Page 23 of 52

Every Android device contains a microSD card that uses FAT32 file system, therefore it is possible to
remove the card from the device and perform its analysis using standard forensic methods. However this
method does not contribute much to the forensics of the overall system as the SD card contains only the
data directly stored there by the installed applications, the part of the data still remains in the isolation of
the application process.

Logical acquisition technique is the method that performs data extraction on the application level.With
the logical acquisition approach is usually possible to retrieve such information as call logs, browser history,
contacts and SMS messages. The example of an application that takes advantage of logical acquisition
technique is “The Open Source Android Forensics” application that gathers call logs, browser history, contacts
and SMS messages. Obtained data are stored in CSV files on the SD card inserted into device, so that the
standard forensic analysis methods can applied to them [31].

For extraction of more significant data a physical acquisition might be applied. The physical acquisition
methodology for Android OS is called “dd image. The “dd” image makes a complete copy of different system’s
partitions, which can be analyzed using traditional forensics methods. These partitions use the open source
file system YAFFS2 (Yet Another Flash File System 2) which is one of the significant challenges related to
the Android platform. However, the “dd” image technique requires root privileges.

Chip-off analysis technique focuses on the explicit examination of Androids NAND flash memory and re-
quires the analyst to have the full forensics lab facilities.

The approach presented in this study is considered to be a logical acquisition methodology as it examines
only the file system level data. Moreover as the application discussed in [31] the tool developed during this
research works as a usual Android application that can be installed on the device only for the data collection
purposes and uninstalled after the collection phase is finished.

3.2 The role of data mining

The proposed methodology aims at detection of suspicious applications. Android security permissions are
used as characteristics by which it is possible to identify the applications that may hide their real features or
manage sensitive user’s data without their notification. The approach is mainly focused on the applications
that explicitly declare the use of permissions connected with personal information: credentials, calendar,
events, email, SMS/MMS and so on.

The technique adopted for suspicious application detection refers the widely used data mining methodology
– data classification. Classification is “a data mining function that assigns items in a collection to target
categories or classes” [37]. The typical classification problem deals with the class prediction for the analyzed
data unit based on the information retrieved from initial dataset also called a training dataset. Classification
process is a supervised learning process as the objects in the training set are accompanied by labels indicating
the class. The classification process is based on two main steps: model construction and model usage. The
model describes a set of predetermined classes using the information of the training dataset. To create a
model, the classification algorithm typically performs the analysis of the dataset characteristics with the
known classes trying to discover the specific patterns called also “predictors”. The discovered patterns
identify the “rules” by which the one or the another category can be assigned to the object. The model
might be represented as classification rules, decision trees, or mathematical formula.

In the second phase of the classification process previously created model serves as a base for classifying
future or unknown objects. The classes to the unknown data units are assigned by comparing values of its
attributes with the patterns that describe the predefined classes.

In the scope of this research the objects that need to be classified are the Android applications retrieved from
the device. The applications might be categorizes as “suspicious”, “not suspicious” or “possibily suspicious”

3.2 The role of data mining Page 24 of 52

according to the set of security permissions that they declare to use. The classification model is represented
by the set of patterns – subsets of security permissions that identify the level of “suspiciousness” of analyzed
objects. In order to discover the specific subsets of security permissions the data mining technique - frequent
set discovery was applied.

3.2.1 Frequent set mining

Frequent set mining is one of the most basic data mining tasks that tries to identify some specific patterns in
large data loads. This task is essential when dealing with clusters, classifiers, association rules or other kinds
of correlations. The frequent set mining problem originated in market basket analysis, which examines the
sets of items purchased by customers and tries to discover some specific dependencies between those items
[38]. The marketing specialists use the results of association rule mining for item positioning in the store.

The detection of frequents patterns in the sets of Android permissions can be equated with the market
basket problem. The security permissions can be thought as the products that occur together. Then, the
applications that declare the permissions play the role of the customers. In this context the frequent itemset
is a set of Android security permissions that very often occur together.

Lets formalize the definition of the a frequent itemset. Let I = {i1, i2, ..., im} be a set of items.
The couple (t′, I ′) is then the transaction over I, where t′ is the transaction identifier and I ′ is a set of
items from I.
A database D over I is a set of transactions over I such that each transaction has a unique identifier.
A transaction T = (t′, I ′) supports a set X if X ⊆ I ′. The set of transactions identifiers of transactions
in D that support X compose a cover of a set X. The support of a set X in D is equal to the number of
transactions in the cover of X in D.
A set is called frequent if it satisfies the minimal support threshold s0, with 0 ≤ s0 ≤ |D|, where the support
of an itemset X is determined as a number of transactions T containing X :

s(X) = |{T ∈ D : X ⊂ I}| (1)

The choice of the support threshold determines the number and usefulness of the found frequent itemsets.
Generally, the collection of frequent sets with respect to chosen support is defines as follows:

F (D, s) := {X ∈ I|s(X,D) > so} (2)

The frequent set mining is a first phase of well known data mining problem – association rule mining. There
is a big number of algorithms that provide an effective solution for frequent itemset retrieval. Considering
the suspicious application identification problem the Apriori association rule mining algorithm was chosen to
perform the discovery of security permissions that frequently occur together.

The Apriori is an improvement of first proposed association rule mining algorithm called AIS [38].The main
advantage Apriori is that instead of determining the support of all possible itemsets and selecting those that
satisfy the support threshold it performs first breadth-first search starting the itemsets of length “1” on each
iteration identifying the candidates for frequent itemset. More specifically, it finds sets Ck of k-itemsets based
on so called apriori principle, which states that the set is a frequent set if all its subsets are also frequent
sets[39].

However, before the actual pattern discovery the classification model requires to complete some additional
data preparation steps, mainly the choice of the suitable training dataset, the support threshold as well as
data cleaning and data preprocessing if needed.

The data preprocessing phase as well as the frequent set discovery in transformed dataset using Apriori
approach are performed with the help of specific data mining called Weka. The Waikato Environment for

3.2 The role of data mining Page 25 of 52

Knowledge Analysis (Weka) is a software that has collected together a set of machine learning algorithms
for data mining tasks such as attribute selection, association rules, clustering, prediction and classification
algorithms. The tool was chosen generally by the following reasons:

• is an open source Data Mining software package written in Java

• capable to manage big data loads

• suitable also for not data mining specialists

• supports data preprocessing and frequent itemset discovery

• support many different parameter for Apriori, namely lower and upper bound for the support threshold,
different metric types etc.

3.2.2 Applications’ categorization profiles

As already stated before the methodology is mainly focusing on the applications that have an access to
user’s personal data. Therefore we have defined a set of categorization profiles, to describe applications
that in some way manage user’s sensitive data. This categorization (table 1) is based on the analysis of the
default set of Android permissions and takes into account features that are connected with each sensible
data category profile. To analyze an application, multiple profiles could be considered, according to the
specific functionalities offered by the application. Regarding the aim of the approach, the first demand for
the applications in the training dataset is to fit at least one categorization profile.

In order to built an accurate data classification model the large training dataset has to be considered. To
complete this step we have taken the advantage of AppAware, a tool developed at Information Management
group at ETH Zurich to monitor the diffusion of Android mobile apps [40]. In this way, at present we have
analyzed over 42000 different Android applications and have selected a training set of 13098 applications that
fit the categorization profiles meaning have access to the private user’s information. All the objects in the
training dataset are assumed to be safe as they are not reported to be malicious by users with the AppAware
features and distributed worldwide. This allows us to state that the sample considered is heterogeneous
enough for the build of an appropriate classification model.

3.2.3 Data preprocessing

Classification models perform the best on sparse categorical data. Here sparse data is data for which only a
small fraction of the attributes are non-zero or non-null in any given row. The typical example of sparse data
is already mentioned market basket, where we try to identify collection of items that customer purchases and
how the purchase of one item depends on others. In the scope of presented methodology we can think of
applications as customers and permissions used together in an application as a set of items purchased. To show
that permission dataset is sparse and that association rules model can be applied, some data preprocessing has
to be applied, mainly the transformation into appropriate format. The data transformation was performed
following 3-step approach:

• Create a matrix, where each row indicates an application and each column indicates a separate permis-
sion.

• The matrix contains 2 values “1” or “?”, where one specifies the presence of permission in the certain
application and “?” indicates that permission is not present (See Figure 5).

3.2 The role of data mining Page 26 of 52

Profile Set of permissions
Contacts WRITE SYNC SETTINGS,WRITE CONTACTS

,READ CONTACTS, MANAGE ACCOUNTS,
GET ACCOUNTS, ACCOUNT MANAGER

SMS-MMS messages WRITE SYNC SETTINGS, WRITE SMS,
VIBRATE, SET ORIENTATION,
SEND SMS,RECEIVE SMS,RECEIVE MMS,
READ SMS, FLASHLIGHT,
BROADCAST SMS

Call Log VIBRATE, PROCESS OUTGOING CALLS,
FLASHLIGHT, CALL PHONE, CALL PRIVILEGED

Audio & Video WRITE EXTERNAL STORAGE, SET ORIENTATION,
RECORD AUDIO, MODIFY AUDIO SETTINGS,
GLOBAL SEARCH, FLASHLIGHT,
BLUETOOTH, BLUETOOTH ADMIN,
CAMERA

Tasks & Calendar & Organizer WRITE CALENDAR, REORDER TASKS, READ CALENDAR,
GLOBAL SEARCH, GET TASKS, BLUETOOTH ADMIN

Browser History WRITE SYNC SETTINGS, WRITE HISTORY BOOKMARKS,
READ HISTORY BOOKMARKS

Images WRITE EXTERNAL STORAGE,
SET WALLPAPER HINTS, SET WALLPAPER,
SET ORIENTATION, READ FRAME BUFFER,
GLOBAL SEARCH, FLASHLIGHT,
BLUETOOTH, BLUETOOTH ADMIN,
CAMERA

Phone Settings WRITE SYNC SETTINGS, WRITE SECURE SETTINGS,
WRITE GSERVICES,WRITE APN SETTINGS,
SET WALLPAPER, SET WALLPAPER HINTS,
SET ORIENTATION, READ SYNC STATS,
READ SYNC SETTINGS, READ PHONE STATE,
MODIFY AUDIO SETTINGS, FLASHLIGHT,
ACCESS CHECKIN PROPERTIES,
CHANGE CONFIGURATION,
DEVICE POWER

Email & services related to web WRITE SYNC SETTINGS, WRITE GSERVICES,
USE CREDENTIALS, SET ORIENTATION,
MANAGE ACCOUNTS,GLOBAL SEARCH,
GET ACCOUNTS, FLASHLIGHT,
ACCESS COARSE LOCATION,
ACCESS FINE LOCATION, ACCESS NETWORK STATE,
ACCESS WIFI STATE,ACCOUNT MANAGER,
CHANGE NETWORK STATE, INTERNET

Location Information & Tracking WRITE GSERVICES, INSTALL LOCATION PROVIDER,
ACCESS COARSE LOCATION, ACCESS FINE LOCATION,
ACCESS LOCATION EXTRA COMMANDS,
ACCESS MOCK LOCATION,
ACCESS NETWORK STATE,
CONTROL LOCATION UPDATES, INTERNET

Table 1: Set of classification profiles, defined on the basis of the relevant Android security permissions.

3.3 Apriori frequent set mining example Page 27 of 52

• Save the created matrix to the CSV file, that later will be passed as a input to the chosen data mining
tool. This step is needed in order to remove not necessary attributes from the dataset and to specify
that values of the attributes are not numerical (as it is by default), but categorical.

Figure 5: Data Matrix

3.3 Apriori frequent set mining example

The following example demonstrates the use of Apriori algorithm for the construction of the classification
model applied to the identification of suspicious applications on Android devices. Lets consider that we have
8 different applications that are requesting a set of permissions (Table 2):

Application ID Set of permissions
1 internet, write storage, read sms, global storage,read calendar
2 internet, read calendar, write contacts, camera, read sms, global search
3 call phone, read calendar, write contacts,camera, internet
4 read calendar, write contacts, write storage, read sms, global search
5 read calendar, write contacts, camera, read sms, internet
6 global search, write contacts, camera, read sms
7 global search, write contacts, write storage, read sms
8 global search, write sms, vibrate, install package

Table 2: The example of applications with their permissions

Lets suppose the minimum support count required for this dataset is 3 (itemset must occur in 3 or more
permission lists).

First, generate the set L1 of frequent 1-itemsets. Since Apriori performs bottom-up approach, in the first
iteration every item itself is a candidate for itemset. The set L1 will consist of all 1-itemsets (Table 3) that a
support count equal or greater than min. support. The dataset is scanned to calculate support for all items
and then only those items that satisfy min. support threshold are chosen.

3.3 Apriori frequent set mining example Page 28 of 52

Itemset Support
{internet} 4
{write storage} 4
{read sms} 6
{global search} 6
{read calendar} 5
{write contacts} 6
{camera} 4

Table 3: The set L1

The support vibrate, install packages and call phone is less than 3, therefore they are not present in L1.

As a second step all frequent 2-itemsets are generated. The set of frequent 2-itemsets L2 is discovered by
joining the set L1 calculated in the previous step with itself. The result of such join operation is a set of
candidate itemsets for L2. The dataset is scanned to determine the support count for each of candidate
2-itemsets. L2 will consist of candidates with support equal of greater than minimum support (Table 4).

Itemset Support
{internet,read sms} 3
{internet,read calendar} 4
{internet, write contacts} 3
{internet, camera} 3
{write storage, read sms} 3
{write storage, global search} 4
{read sms, global search} 5
{read sms, read calendar} 4
{read sms, write contacts} 5
{read sms, camera} 3
{global search, read calendar} 3
{global search,write contacts} 4
{read calendar, write contacts} 4
{read calendar, camera} 3
{write contacts, camera} 4

Table 4: The set L2

The generation of the set of candidate 3-itemsets, is taking advantage of the Apriori Property. Apriori
Property states that all subsets of a frequent itemset must also be frequent. The use of Apriori Property
lets to avoid a heavy computation due large candidate itemsets. For example: lets take an 3-itemset in-
ternet, read sms, global search. The 2-itemsets are: internet, read sms, internet, global search, read sms,
global search. The itemset internet,globall search is not member of L2 and violates Apriori Property, so the
3-itemset won’t be added to L3. The set L3 is discovered by joining set L2 with itself, eliminating candidate
3-itemsets that violate Apriori and then checking remaining candidates against min.support threshold (Table
5).

3.3 Apriori frequent set mining example Page 29 of 52

Itemset Support
{internet, read calendar, write contacts} 3
{internet, read calendar, camera} 3
{write storage, read sms, global search} 3
{read sms, global search, read calendar} 3
{read sms, global search, write contacts} 3
{read sms, write contacts, read calendar} 3
{read sms, write contacts, camera} 3
{read calendar, write contacts, camera} 3
{write contacts, camera, internet} 3

Table 5: The set L3

The set L4 is discovered by joining set L3 with itself, eliminating candidate 4-itemsets that violate Apriori
and then checking remaining candidates against min.support threshold (Table 6).

Itemset Support
{internet, read calendar, write contacts, camera} 3

Table 6: The set L4

The algorithm terminates here, because there are no 5-itemsets that would satisfy min.support threshold.

The itemsets of all length that have satisfied the chosen support threshold form a classification
model – the basis of the further classification of unknown Android Application classification. New coming
application is categorized by comparing the set of security permissions it declares against created classification
model. For sake of classification correctness, the applications assigned to the training dataset are all proven
to be not anyhow malfunction, so that all the itemsets of the classification model are not suspicious too. For
the same purpose the support threshold was chosen very low, only 9%, which means that certain itemset has
to occur in 9 different applications. In such a way much more “safe” subsets can be discovered what increases
also the efficiency of further analysis. If the candidate application contains a set of security permissions that
is not present in the classification model, it receives the “suspicious“ label. In case when only the subset of
security permissions matches with the itemset from classification model, the analyzed application is defined
as “possibily suspicious”. The application is assigned to “not suspicious” class only when it fully matches
one of model itemsets.

However the classification process is semi-automated as it does not determine clearly the maliciousness of a
certain application, it simply signals that some applications could require additional specific investigations.
Such approach was chosen due to the fact that there are many applications which make use of security
permissions related to the sensitive data in a good way. Consider for example Google Gmail application
that has access to the user’s email accounts credentials or save the attachments on the SD card. In such
cases it is very difficult to identify if the application actually misuses sensitive data, or in the contrary brings
benefits to the user. As these particular case require some additional examination the final decision about
the suspiciousness level is left to the analyst.

4 Suspicious Application Detection Algorithm

The Suspicious Application Detection Algorithm is the algorithm that was created for the classification of
Android applications, relying on the previously built classification model. It consists of frequent itemsets of
different size. The Detection Algorithm takes as input the set of security permissions of the analyzed appli-
cation and outputs the class label (Figure 6). More explicit flowchart can be found in the Appendix (figure
15) The algorithm is based on so called level-by-level subset creation and pruning. As already mentioned
before, the classification label for the application is assigned by matching its set of permissions with the sets
in the classification model. Therefore, as a first step, the input set of security permissions is compared with
collection of itemset. If the initial itemset has a match, it means that it is safe, therefore the “non suspicious”
class is assigned to the application, and algorithm terminates. However, if on the top level no match was
found, it could happen that some items in the are initial setsuspicious. In order to identify these items,
the algorithm proceeds level by level in a tree-wise manner; it generates all subsets of initial set of security
permissions, until the first subset with a match is found. According to the Apriori Property, such a matching
itemset with all its subsets can be pruned. We have considered that all the itemsets of the classification
model are non-malicious, therefore the match means that the analyzed set does not contain any elements
that cause suspiciousness, so also none of its subsets will. Such a pruning strategy significantly minimizes
the search space and the complexity of the algorithm. After the pruning, the same steps are performed of
the remaining set of security permissions, until the subset has less than 2 elements or no more matches in
the classification model are found. If the final set is empty - the application is considered to be “possibily
suspicious”, meaning that it might have a combination of functionalities belonging to different classification
profiles. However, if the final set contains some permissions, all of them are identified as suspicious and the
application is assigned to the class with the label “suspicious”.

4.1 The use case

In order to show a use case of the described Suspicious Application Detection Algorithm, we assume that an
application hides its steganographic functionalities, pretending to be a simple image editor. This application,
called ANSAN (Apparently Non-Suspicious Application Name), is able to store a set of sensitive data such
as secret contacts into images, for instance using collage steganography [41]. For example, a criminal may
use ANSAN to hide contacts of other criminals, without storing them in the SIM card and any phone call
to these contacts should be managed via ANSAN, to bypass traces left in the regular contact list and recent
call list. This situation seems not the easiest to detect with traditional approaches. As ANSAN manipulates
images, it shall be able to write inside images stored on the external memory card – the typical location
for pictures. Of course, to be able to deal with secret contacts, the application ANSAN shall provide a way
for starting phone calls directly without requiring the user to save secret contact information on the phone
memory. For this purpose lets consider that the application uses the following permissions: write contacts,
call phone, write external storage and camera

It is obvious, that only a subset of security permissions is actually related to the image manipulation, namely
the permissions write external storage and camera. Moreover this subset is proven to be not suspicious
as it is present in the classification model. This leads to the conclusion that the remaining permissions
write contacts, call phone are the ones that do not match the usual patterns of the applications that operate
images and thus cause the “suspiciousness”.

Step 1. To identify the malicious items first the full set is compared with the elements of the classification
model. As already mentioned, the set of permissions used by ANSAN is not typical for the applications with
such a functionality, therefore no match will be found. Then, the following steps has to be executed.

Step 2. Generate all the subsets of length one unit smaller than the length of the initial set, in this
case 3. The created subsets are then :{ write contacts, call phone, write external storage}, { write contacts,

4.1 The use case Page 31 of 52

Figure 6: Main steps of Suspicious Application Detection Algorithm

read contacts, camera}, {call phone, write external storage, camera},{ write contacts, write external storage,
camera}. Since each itemset contains or the permission write contacts, or call phone, or both of them, no
match is found also on this level.

Step3. Generate all the subsets of length 2. The new itemsets are: {write contacts, call phone},
{ write external storage, camera},{write contacts, write external storage},{write contacts, camera},{ call phone,
camera}, { call phone, write external storage }. It is possible to see that on this level the itemset
{ write external storage, camera} that corresponds to a pattern in the classification model appears. Accord-
ing to the Apriori rule it can be safely eliminated from the initial set of permissions.

Step 4. Execute the detection on the remaining security permissions. After the pruning the following itemset
has to be analyzed: {write contacts, call phone}. As discussed above, both permissions in this set do not
correspond to any patterns of the image editing applications and in addition the itemset of size 2 is the
smallest considered unit, meaning that the subset cannot be divided anymore. The subset write contacts,
call phone} is identified as suspicious, so are the permissions write contacts and call phone.

The Detection Algorithm clearly identifies the ANSAN as a malicious application and explicitly indicates

4.2 The pseudo-code Page 32 of 52

the elements that are not typical for certain type of applications and may cause a danger. Such a indication
allows both the user and the forensics specialist to understand better the actual behavior of the application
and take appropriate decisions on how to proceed further. In the case of the Android device user ANSAN
can be simply removed from the smartphone. The forensic examiner in his turn has a good hint on what kind
of sensitive data might be exploited by the application. In this particular case from the scope of the ANSAN
and the suspicious permissions detected it is clear that some contacts might be hidden in the images and that
the application might have the possibility to call certain numbers. Having all this information, the forensic
examiner can make use of additional forensic tools and deeper to investigate the suspicious application.

4.2 The pseudo-code

The following pseudo code give the explicit and detail explanation of the Suspicious Application Detection
Algorithm execution (listing 2).

1 Input : app permis s ions (P 1 , P 2 , . . . , P n) , N − number o f pe rmi s s i ons
2 Compare (app permiss ions , CM) , where CM i s a C l a s s i f i c a t i o n Model
3 IF match found
4 Assign the label the same as the as the label a p p l i c a t i o n to which

found match be longs
5 TERMINATE;
6 ELSE
7 N=N−1;
8 IF N<2
9 Check i f app permis s ions i s empty

10 IF i s empty
11 Dec lare a p p l i c a t i o n as ‘ ‘ p o s s i b i l y s u s p i c i o u s ’ ’
12 TERMINATE;
13 ELSE
14 Dec lare the a p p l i c a t i o n as ‘ ‘ s u s p i c i o u s ’ ’
15 Report the remaining pe rmi s s i ons as the s u s p i c i o u s ones
16 TERMINATE;
17 ELSE
18 Generate subse t s o f s i z e N
19 S={s 1 , s 2 , . . . , s m}
20 I d e n t i f y S u s p i c i o u s (s 1) ;
21
22
23 The func t i on I d e n t i f y S u s o i c i o u s (s k)
24 Input : A subset s k , at the f i r s t i t e r a t i o n k=1
25 Compare (s k , CM)
26 IF match found
27 Delete e lements o f s k from a p p s u s p i c i o u s
28 IF | a pp s u s p i c i o u s |<2
29 IF i s empty
30 Dec lare a p p l i c a t i o n as ‘ ‘ p o s s i b i l y s u s p i c i o u s ’ ’
31 TERMINATE;
32 ELSE
33 Dec lare the a p p l i c a t i o n as ‘ ‘ s u s p i c i o u s ’ ’
34 Report the remaining pe rmi s s i ons as the s u s p i c i o u s ones
35 TERMINATE;
36 ELSE

4.3 The complexity Page 33 of 52

37 I d e n t i f y S u s p i c i o u s (app permis s ions) ;
38 ELSE
39 Check i f s k i s the l a s t emelent o f S
40 IF i s the l a s t
41 N=N−1;
42 IF N<2
43 Check i f a pp s u s p i c i o u s i s empty
44 IF i s empty
45 Dec lare a p p l i c a t i o n as ‘ ‘ p o s s i b i l y s u s p i c i o u s ’ ’
46 TERMINATE;
47 ELSE
48 Dec lare the a p p l i c a t i o n as ‘ ‘ s u s p i c i o u s ’ ’
49 Report the remaining pe rmi s s i ons as the

s u s p i c i o u s
50 TERMINATE;
51 ELSE
52 Generate subse t s o f s i z e N
53 S={s 1 , s 2 , . . . , s m}
54 I d e n t i f y S u s p i c i o u s (s k) , k=1;
55 ELSE
56 k=k+1;
57 I d e n t i f y S u s p i c i o u s (s k)

Listing 2: Suspicious Application Detection Algorithm - Pseudo Code

4.3 The complexity

The complexity of the algorithm strongly depends on the application’s presence in the classification mode,
the number and type of permissions the it contains. The most expensive operation that actually decides
the computational complexity of the Detection Algorithm is the function IndetifySuspicious which includes
the subset generation and the itemset’s comparison with the classification model elements. However, the
comparison function for any kind of itemset is defined as a single access to the database and its complexity
does not increase together with the input. Therefore it does not have an impact on the overall complexity
of the algorithm. Generally, the estimation of the complexity depends on how many times the function
IdentifySuspicious will have to be executed.

The best case of the algorithm occurs when the application is already present in the classification model,
meaning that it was analyzed previously and thus all the information regarding the suspiciousness in known.
The label then can be directly retrieved from the classification model without any additional steps. Yet
another situation that has low complexity is when the analyzed application does not contain any permissions
(N=0) and it can immediately be declared as not malicious one. In both cases the complexity of the algorithm
is O(N).

In the case when the application’s set of security permissions does not have a match in the classification
model, meaning that the application is either “suspicious” either “possibly suspicious”, the complexity of the
algorithm is lower if the malicious permissions are identified on the high level of the hierarchy of all possible
subsets. The Hierarchy starts with full set of permissions on top, and goes down level by level decreasing the
length of subsets and generating all itemsets of that length. Lets suppose that the set consists of the following
permissions: P1, P2 and P3, where P2 is suspicious and the itemset P1P3 is present in the classification
model. The suspicious permission will be identified on the level 2, after checking only 4 different combinations
of permissions. Generally, for N permissions assuming that all not suspicious itemsets of the set are included
into classification model and there is only one malicious permission in the set, N combinations will have

4.3 The complexity Page 34 of 52

to be generated and checked. The generation of N combinations knowing that 1 permission is suspicious
implies selecting 1 combination from N, which is C(N,N − 1), thus the IdentifySuspicious will be executed
N times. The number of combinations that have to be checked during the runtime of the algorithm depends
on the number of suspicious permissions in the initial set (this all applies to the case when all not suspicious
subsets of analyzed set are present in the classification model). For N - number of permissions, given that 2
permissions are suspicious we would have to check

C(N,N − 2) + 1 =
N !

(N − 2)!(N − (N − 2))!
+ 1 =

n(n− 1)

2
+ 1 (3)

combinations, as not only all the combinations of size N-2 have to be checked but also the combination of
two suspicious permissions itself.

The general case for the m suspicious permissions when m > 1 is at most:

m∑
k=1

C(N,N − k) (4)

different combinations to check. Therefore the average computational complexity of the Detection Algorithm
is exponential in the number of suspicious permissions - O(2m).

The worst case for the algorithm is when the suspicious permissions are identified on the lowest level of the
hierarchy, then there will be generated: ∑

1≥m≤N

C(N,N −m) + 1 = 2N (5)

This implies that the overal computational complexity is then exponential O(2N). The typical scenario of the
worst case is when the itemsets of the higher levels in the hierarchy (length(itemset) > 2) are not known to
the classification model. Another scenario is when the number of suspicious permissions m in the application
is equal to N − 2. Having the condition that all not suspicious itemsets of the application are present in
the classification model, the number of suspicious permissions in the analyzed set identifies on which level of
the hierarchy of the combinations (tree of combinations) the algorithm will identify suspicious items and the
analysis will terminate.

To illustrate the worst case of the algorithm we have performed the analysis of the application that has
declared 19 permissions. All the subsets down to the level 2 were not known to the classification model.
Therefore the 665057 combinations of different length had to be checked. The over time of the analysis
execution was about 18 hours on the system with 4GB of RAM and the processor Intel Core Duo 2.1GHz

However the worst case of the Detection Algorithm occurs rarely, as the total number of permissions in the
application typically does not reach 20. Most of the applications declare to use between 1 and 10 permissions
(figure 7). Only a very small number of applications accesses the features of the system with more than 20
different permissions. Typically, the applications with a big number of permissions are the standard ones that
are provided together with the mobile device or the applications that provide system management facilities
or include Google services. The number of malicious permissions in one application is typically between 1
and 5.

Moreover, whenever a new application is analyzed by the algorithm, all its features such as permission set,
all possible itemsets and level of suspiciousness are added to the classification model. Due to such a constant
update of the model than more applications are discovered than lower becomes the computational complexity
of the further analysis.

4.4 Evaluation of Detection Algorithm Page 35 of 52

Figure 7: The distribution of permissions in the classification model

4.4 Evaluation of Detection Algorithm

When dealing with algorithms, two main aspects need to be taken into consideration: how correct are the
results, and how quickly it performs a given task.

To evaluate the Suspicious Application Detection Algorithm we have chosen two kinds of tests, namely the
correctness test that refers to identification of false positives and false negatives, and the execution time test.
For the execution of the experiments, a sample of 450 different applications was created; it was collected from
the real mobile devices running Android OS. Correctness and response time strongly depend on the number
of permissions that an application uses. Therefore, the data sample has been divided into subsets, taking
into account the number of permissions that applications require. 3 different application groups were created
for the tests:

• applications with 1-5 permissions;

• applications with 5-10 permissions;

• application with more than 10 permissions.

Each group contains 150 application with the corresponding number of permissions. All applications are
not present in the classification model, so that the full analysis has to be executed on all of them. The
applications that do not require any permissions were not considered, simply for the fact that they have no
impact neither on the execution time nor on the correctness of the algorithm. They could still use native
API to deceive Android security framework. However, this case is not covered in this thesis.

4.4 Evaluation of Detection Algorithm Page 36 of 52

4.4.1 Correctness evaluation

The task: To identify how many false positives and false negatives occur on average during the analysis
process.

Here false positive is defned as an application that does not have malicious intentions but nevertheless is
assigned to the class of suspicious applications. The false negative is the malicious application that has
been identified as not harmful to the system on which it is running.

The dataset: the same 3 groups of applications are taken into consideration. In order to test the algorithm
for the appearance of false positives 50 items of each group were substituted with 50 applications that were
already present in the classification model. However, the names of the applications were changed, so that the
sets of permissions that they define would have to be analyzed again. Moreover, to identify false negatives
to each group there have been added 25 suspicious applications. Due to the fact that there are not many
applications with the confirmed suspiciousness, the sets were generated artificially using the permissions of
applications known to be malicious, such as MobileSpy or MobileStealth [33]. From 25 generated applications
10 of them were added to the classification model, however, also with the changed names. In this case it is
possible to check how the algorithm classifies the applications that were already analyzed once but without
having the additional information, such as a real application name.

Total number of
apps

Correctly
classified apps

Not correctly
classified apps

Not suspicious apps, not
present in DB

100 70 30

Not suspicious apps
present in DB

50 50 0

Malicious app not present
in DB

15 15 0

Malicious apps present in
DB

10 10 0

Table 7: The correctness test for the applications with 1-5 permissions

Total number of
apps

Correctly
classified apps

Not correctly
classified apps

Not suspicious apps, not
present in DB

100 63 37

Not suspicious apps
present in DB

50 49 1

Malicious app not present
in DB

15 15 0

Malicious apps present in
DB

10 9 1

Table 8: The correctness test for the applications with 6-10 permissions

The results

False Positives. The number of false positives in the set of applications that were already present in the
classification model and renamed is very insignificant. In all 3 groups such application were classified with the
correctness almost of 100%. The occurrence of the outliers can be explained by some inconsistencies in the

4.4 Evaluation of Detection Algorithm Page 37 of 52

Total number of
apps

Correctly
classified apps

Not correctly
classified apps

Not suspicious apps,not
present in DB

100 43 57

Not suspicious apps
present in DB

50 48 2

Malicious app not present
in DB

15 15 0

Malicious apps present in
DB

10 9 1

Table 9: The correctness test for the applications with more than 10 permissions

classification model introduced during its creation. The absence of additional information did not have any
impact on the correctness of the results as subsets of permissions were already present in the the classification
model and the analysis is performed based on them. However the significant percentage of false positives has
occurred during the analysis of the new not suspicious applications. It is possible to see that the number
of outliers depends on the size of the permission set of the applications. In the group of applications with
the 1 to 5 permissions about 30% of false positives has been noticed (table 7). The set of the applications
with 6 to 10 permissions contained about 40% of false positives (table 8). In the last group more than half
applications have been identified as malfunction when they are not. Such a number of false positives indicates
the correlation with the number of permissions in the analyzed application (table 9). Than bigger the set of
permissions than bigger the probability that it will contain at least one permissions that won’t fit any of the
frequent patterns.

Another reason for the such significant number of false positives it the ambiguity of the permissions used
by the applications. The same permissions that allow the access to sensitive data can be very useful in the
context of one application and cause the danger or misuse the sensitive information in the context of another
one.

False Negatives. In all 3 groups only couple of false negatives have occurred. Both, the malicious appli-
cations that were included into classification model and the ones that were not, show similar results. The
applications with the malicious intentions are classified correctly in most of the cases not depending on num-
ber of permissions declared by the application. Nevertheless it is impossible to draw the precise conclusions
from a sample of 25 malicious applications, it can be noted that the classification of suspicious items tends
to be more correct than the classification of non malicious items.

Summarizing the results of the correctness analysis of Suspicious Application Detection Algorithm it can be
stated that the algorithm is false positive oriented. This means that some applications with non malicious
intentions can mistakenly identified as harmful to the system. However, as already mentioned before the
algorithm is semi-automated, meaning that it only gives a suggestions on which applications could require
additional specific investigations.

4.4.2 Performance evaluation

The task: Measure the execution time of the Suspicious Application Detection Algorithm.

The system parameters: 1GB RAM, processor Intel(R) Xeon(R) CPU X5650 2.67 GHz, cash size -
12288KB.

The dataset: 3 sets of applications grouped by the number of permissions.

4.4 Evaluation of Detection Algorithm Page 38 of 52

In order to make more precise performance estimation on each collection of the applications the test has
been executed multiple times. The graphs (figure 8) present average execution time for each group of 150
applications depending on how many times the set was run. Additionally, the comparison of the average time
performance of all 3 groups is made.

Figure 8: Execution time graphs form apps with 1-5 permissions (a), with 6-10 permissions(b), with more
than 10 permissions (c)

Results: from the graphs representing the efficiency of the algorithm by means of execution time (figure
8) its clearly seen that the number of permissions declared in the applications has a big impact on the
performance. As expected, the analysis of the applications with smaller set of permissions is completed much
faster than the analysis of the applications from two other groups. However, with the increasing number of
execution performed at once, the time needed to analyze one application changes only very slightly, therefore
it can be concluded that the amount of executions does not influence the efficiency of the algorithm.

The comparison graph (figure 9) indicates a very big difference between the average time performance of
2 first application groups and the applications with more that 10 permissions. The analysis of the group
application that uses no more than 5 permissions takes 30 sec.The group with 6 to 10 permissions on average
requires about 20 min. However the analysis process of the group of applications that tend to declare 10 and
more permission completes only after about 22h (The worse case scenario is not taken into consideration).
Such a big gap is caused by the fact that number of subsets that needs to be checked against the classification
model grows exponentially with the number of permissions in the set.

4.4 Evaluation of Detection Algorithm Page 39 of 52

Figure 9: Execution time comparison

5 Proposed System Prototype

This chapter presents the design and development process of the software components that demonstrate
the use of the Suspicious Application Detection Algorithm described in the previous section. Moreover the
chapter includes the description of most common use case of the created system from the point of view of
the professional forensics examiner as well as the Android Smartphone user.

5.1 Outline

The development process has started with the definition of set of system requirements, main functionalities
and the analysis of possible development approaches. After the completion of these steps the appropriate
system architecture that fulfills all the stated requirements as well as implements all the defined function-
ality has been designed. During the development phase the following technologies were used: PostgresSQL
Database Server, Android Application Framework, Apache CXF web services and Java Servlets. For the
implementation of the Suspicious Application Detection Algorithm the Java Programming Language was
chosen.

5.2 Proposed system architecture

The high level system architecture proposed for the appropriate demonstration of the usage of Suspicious
Application Detection Algorithm (figure 10) consists of several software components that form the fully
integrated system. As the system is intended to assist two different types of users, namely the professional
forensic analysts and the typical Android Smartphone users, at the software level is has two components.
The web based application Web Forensics serves as a helping tool for forensics examiners and allows to
perform the malicious applications detection phase on the chosen data source, giving an explicit report about
the applications contained in the source, their maliciousness level and the rights that actually are causing
the suspiciousness. Moreover the Web Forensics offers some other functionalities such as maintaining the
database of the applications and their characteristics with the newly discovered ones, viewing the list of
suspicious applications and editing the level of suspiciousness of certain elements. In addition to the a web-
based application for forensic professionals an Android AForensics application that in its turn communicates
with AForensics WebService and delivers the shorten version of detection report to the mobile device end
user was created. AForensics allows the user to collect the data about the applications installed on the device
and submit them for the analysis. As the result the short report that contains only the names of suspicious
application, if such were found, is presented. In such a way the smartphone user is warned about the possible
threats and may take a decision to remove the applications that were signaled as dangerous or continue to
use them.

5.3 AForensics for Android

As remarked AForensics represents a service intended for smartphone users that enables to run the check
for suspicious applications on the device. However, in addition the application serves as a data collection
tool for the forensic professionals. In this particular case during the investigation process AForensics shall
be installed on the analyzed device and uninstalled after that necessary data has been collected.

5.3 AForensics for Android Page 41 of 52

Figure 10: System Architecture

5.3.1 User interface

The tool presents itself as menu based graphical user interface enabling the navigation between the offered
features: Data Collection, Final Report, Instructions and About (figure 11a).

Figure 11: AForensics main menu(a), AForenscis final report representation (b)

Data Collection

The first user interface launches the data collection that runs as a background process. During this phase
the application looks up the third-party applications installed on the device and gathers permissions that the
applications request from Android OS and permissions declared by applications. Moreover, there is being
collected the complementary information like services, broadcast receivers and content providers that each
application could have defined. The whole data is organized using specially for this purpose defined structure

5.4 The Web Forensics application Page 42 of 52

and saved into XML file (listing 3). The structure includes the details about the application itself such as
name, package name and version, as well as the set of permissions that has been declared. The generated file
is then stored on the SD card of the device and also it is sent to the server for the examination.The user is
notified about the ending of the data collection process with the short message (figure 12)

Figure 12: User notification

In the case of forensic professional analyst the created source can be used for the further analysis. The source
can be either directly taken from the server or be retrieved for the system’s SD card applying some traditional
data forensics methods.

1 <a p p l i c a t i o n name= ‘ ‘ Earth ’ ’ package = ‘ ‘com . goog l e . earth ’ ’ version = ‘ ‘1 .1 ’ ’>
2 <requested−permis s ion permis s ion = ‘ ‘ android . permis s ion .

ACCESS FINE LOCATION ’ ’ />
3 <requested−permis s ion permis s ion = ‘ ‘ android . permis s ion .

ACCESS COARSE LOCATION ’ ’ />
4 <requested−permis s ion permis s ion = ‘ ‘ android . permis s ion .INTERNET

’ ’ />
5</ a p p l i c a t i o n>

Listing 3: The structure used for to refine the collected information

Final report

After the data has been sent to the server, the analysis process of the committed source is started. The
communication between AForensics and the server is supported via the AForensics WebService that performs
the transfer of collected data and forms the final report presented to the end user. The final report is available
to the Android device user as soon as the analysis is terminated. The application offers a possibility to launch
the analysis multiple number of times and in this case only the latest report is being delivered. In order to
make it simple and understandable for the users, the report contains only the names of the applications that
have been identified as a malfunction (figure 11b). The phone owner is then free to decide what further steps
to take - to continue using the suspicious applications or remove them from the device.

5.4 The Web Forensics application

Web Forensics is a managing tool that intends to help the forensics professionals in the investigation
process of smartphone running Android OS. The application has been developed using a well known Java
Servlet Technology and located on Tomcat6 web server. The tool enables such functionalities as analysis,
the view and management of discovered suspicious applications, and the update of the database that stores
all information about analyzed applications. In addition there has been implemented the reporting system
that provides the examiner with the specific details of conducted analysis has been implemented.

5.4 The Web Forensics application Page 43 of 52

5.4.1 User interface and functionality

The graphical user interface of Web Forensics does not differ from the interface of simple web application.
The one level on top positioned menu allows the user to switch between the pages of the application that
represent the different features of the system. There are 5 different menu sections: Analysis, Maintenance,
Suspicious Apps, Update Suspicious and Downloads (figure 13).

Analysis

The Analysis section provides the user with the possibility to submit the collected data for the actual analysis.
The data has to follow the predefined structure (listing 3) and be passed as an XML file. The file with such
a structure can be retrieved directly from the investigated phone by taking the advantage of the Android
AForensics application. After the data has been submitted to the web application, the set of applications is
processed by the Suspicious Application Detection Algorithm and the final report is delivered to the examiner.
Moreover the results of each performed analysis are stored in the temporary location so that they could be
accessible for the maintenance process.

Maintenance

Since the collection of discovered malicious and non malicious applications has to be constantly updated
in order to have consistent and more efficient analysis results, the data retrieved during each algorithm
iteration must be added to the classification model. The maintenance process operates with the same kind
of data source as the analysis phase. The labels of applications from the submitted source are compared to
those stored in the temporary location and if match is found the application and its other characteristics
are added to the classification model. Such a management mechanism eliminated the possibility of adding
the inconsistent data into the model as well as leaved the forensic professional freedom to choose which
applications to include into the collection and which ones not.

Figure 13: Web Forensics, Menu

Suspicious Apps

As already mentioned before, the overall system is semi-automated, meaning that the final confirmation
of the application’s suspiciousness level is the task of the user, in this case of the forensics analyst. The
“Suspicious Apps” in section simply presents the list of the Android applications that have been confirmed
as the ones that may perform malicious activities and conduct frauds. Besides the name of the application
the description includes the name of its package and the version.

Update Suspicious

“Update Suspicious” is a suspicious application management section that views all the confirmed and dis-
covered but not yet confirmed applications and enables that editing mode.

5.4 The Web Forensics application Page 44 of 52

Downloads

In the “Downloads” section the version of the Android AForensics is made available to the public.

5.4.2 The reporting mechanism

The final report is delivered to the forensics examiner immediately after the termination of the analysis phase.
The output of the Suspicious Application Detection Algorithm is retrieved from the temporary location and
viewed to the user in a form of a list of all applications with their suspiciousness levels and the set of
identified malicious elements if such are present (figure 14). For the sake of the visual representation the level
of suspiciousness is defined with the different colors. Red square signals the highest level of suspiciousness and
warns the analyst that some additional investigation steps has to be taken. The orange in its turn identifies
the applications with a medium level of suspiciousness, which means that the application is not necessary
suspicious but may simply combine two different activities as for example the image editor that is able to
take pictures and send them via SMS. The green color is assigned to applications that do not contain any
malfunction elements.

Figure 14: Web Forensics, report

Page 45 of 52

6 Related Works

As already discussed before, the Android OS forensics is relatively new and not a well researched field.
However, there already exist some applications that deal with the sensitive data retrieval from Android OS.

6.1 Open Source Android Forensics application

The Open Source Android Forensics application is the small software that extracts the basic data from the
mobile devices running Android OS. The initial version of the application is able to retrieve such information
as call logs, browser history, contacts and SMS messages. Acquired data are stored in the CSV file on the
SD card of the investigated device and can be downloaded onto PC for the further investigations. The
application has been released under GNU General Public License v3 (GPL) allowing developers to built
additional plugins and improve the functionality of the tool. Moreover it is freely distributed for the law
enforcement officers that deal with mobile forensics issues [31].

6.2 Permission based technology by SMobile

In the report published in June 2010, the SMobile has presented the idea of permission-based malicious appli-
cation detection approach [33]. Despite the fact that the approach presented by SMobile has commonalities
with the methodology described in this thesis report, we confirm that our research in this particular area
has started before the SMobile’s publication. Moreover the first submission to the conference of the initial
research idea is also dated earlier than the report of SMobile.

In their publication the SMobile clearly states that signature-based detection mechanism is not able to identify
all the threats on mobile devices and alerts the importance of permission - based techniques. However no
details on how actually the methodology uses the information about application’s granted permissions are
provided. The publication identifies only the set of 23 permissions that allow the applications to access
sensitive services and user’s data. In addition, the statistics of metada collected from Android Market
is presented, namely the statistics of 68% of applications that are available for download. According to
this statistics the permissions that grant the access to the sensitive information are declared by each fifth
application. Moreover 29 applications were found to declare the same set of permissions as known Android
malware.

7 Conclusions and future work

The fascinating evolution of mobile technologies, especially in consumer market, has increased the amount
of sensitive data stored on portable devices and thus their importance in the forensics investigation. As
shown in chapter “State of the Art in Digital and Mobile Forensics”, the number of treads involving mobile
devices has grown rapidly in the past years. Despite many technologies and methods were developed to
support the professionals in forensics when analyzing small scale devices, these are far behind when it comes
to the investigation of smartphones. In the forensics tools market, there is a lack of software solutions that
support the investigators in their activities while dealing with innovative platforms, as for instance on Android
Handsets.

For this purpose we have developed a semi – automated methodology that will aid in the identification of
“suspicious” applications on smartphones running Android OS. With “suspicious”, in this context I refer
to applications that might hide, steal or in any other way misuse user’s sensitive data or exploit sensitive
services. The technique relies on the classification of Android applications in “suspicious”, “possibly suspi-
cious” and “not suspicious” groups, according to the set of permissions granted to them and taking into the
consideration the type of sensitive information that is handled by them. The classification base model was
built applying known data mining technique – the Apriori Frequent Set Mining and includes more than 13000
safe applications that manage user’s personal data. The sample was chosen from around 40000 applications
hosted on the Android Market and collected with AppAware, a specific tool for Android OS.

As a result of the described methodology, the Suspicious Application Detection Algorithm was implemented.
It performs all the classification steps relying on the base model. Additionally, in order to proof the efficiency
of developed technique, multiple experiments have been executed. The main focus of the tests was on the
overall correctness of the classification process and on the average execution time of applications.

The correctness of the algorithm has been measured by the number of false positives and false negatives that
occur during the classification process. The results indicate that the malicious items are classified with the
greater accuracy than the applications with non malicious intentions. Moreover it was concluded that the
Suspicious Application Detection Algorithm is false positive oriented. This means that some not suspicious
applications are mistakenly identified as harmful to the system.

The results of the time execution test have shown that the time performance of the algorithm strongly depends
on the size of permission set that the analyzed application uses. The Suspicious Application Detection
Algorithm performs best on the applications with the small number of permissions. As the number of
permissions in the set increases the execution time grows. There was also noticed the big difference between
the time in which the analysis of an application with small number of permissions (up to 5) and the analysis
of the application with more than 10 permissions is completed. The difference of on average 14 min occurs
due to the exponential growth of the permission combinations that have to be analyzed in order to complete
the classification. However, according to our data, Android applications that request permissions generally
limit them to 3.

The methodology described within the thesis report at its initial stage was presented at the 4th International
Workshop on Computational Forensics (IWCF) in November, 2010. The workshop is intended as a convention
of experts in all areas of computational and forensics sciences, to present and discuss recent progress and
advances [1]. The presented paper has been evaluated positively and generally received a good feedback.

Beyond the research and development in the field of mobile forensics described in this thesis, other activities
can be considered for future researches. With the respect to results achieved during the research on the
malfunction application detection in the context of Android mobile forensics, the following points can be
considered for the future investigation: the Suspicious Application Detection Algorithm efficiency improve-
ment, usability testing of the AForensics web application from the point of view of forensics professionals
and the improvement of malicious application detection service offered to the Android device users.

Page 47 of 52

In order to minimize the execution time and improve the efficiency of the Suspicious Application Detection
Algorithm the parallel computing technique could be applied. In this way multiple processing elements
could be used to solve the detection problem. On the level N-1, when N is the number of permissions,
the collection of the permission subsets could be broken into smaller parts. In this way each processing
element would execute one branch of the algorithm starting from the single permission set containing N-1
items simultaneously with others. In the end, the combined result of all independently running branches
will contain all the suspicious permissions of the initially given set, if such exists and the classification label.
Additionally, to achieve the best possible performance, the different resources such as a multiple computers
with single processors, a single computer with multiple processors, a set of networked computers or specialized
hardware could be tested.

Besides the parallel computing approach, different heuristics could be taken into consideration. Such heuris-
tics could help to reduce the runtime of the algorithm by letting to eliminate some subset branches on the
early steps of the analysis process.

Regarding the minimization of occurring false positives, new cluster of Android applications known to be
not suspicious can be added to existing classification model. Such an addition could not only improve the
correctness of the analysis and minimize the number of false positives but also to improve the efficiency of
the detection service for the Android device users. In this case the extended classification model would speed
up the the response time of detection result provided to the users.

We are also considering to include the outcome of the research directly into AppAware, in order to warn all
Android end users about suspicious software before installing it. Moreover, it could be possible to consider to
retrieve applications directly from the Android Market, in order to automatize the analysis process as soon
as new application or new versions of already evaluated applications are released. At present, this possibility
is explicitly prevented by Android Market terms of use.

References

[1] Di Cerbo F., Girardello A., Michahelles F. and Voronkova S. 2011. Detection of Malicious Applications on
Android OS. Computational Forensics, Lecture Notes in Computer Science, volume 6540, pp. 138–149.

[2] Electronic discovery definition. 2008.
http://searchfinancialsecurity.techtarget.com/sDefinition/0,,sid185 gci1150017,00.html. Accessed: 27-
02-2011.

[3] Scientific Working Groups on Digital Evidence and Imaging Technology: Combined Master Glossary of
Terms. 2009. http://www.theiai.org/guidelines/swgit/swgde/swgde swgit glossary v2-3.pdf. Accessed:
02-10-2010.

[4] Robbins, J. 1998. An Explanation of Computer Forensics, PC Software Forensics An Explanation of
Computer Forensics by Judd Robbins. http://www.pivx.com/forensics. Accessed: 02-07-2010.

[5] Meadaris K. 2006. Grants to help develop ways to improve digital evidence collection, Purdue University.

[6] United States Department of Justice.2001. Crime Scene Investigation: A Guide for First Responders,
National Institute of Justice, N.W.Washington.

[7] Wasik M. 1989. Law Reform Proposals on Computer Misuse. The Criminal Law Review 257.

[8] Leigh J. Computer Forensics Chain Of Custody. http://www.articledashboard.com/Article/Computer-
Forensics-Chain-of-Custody/1479133. Accessed: 10-07-2010.

[9] Jansen W. and Ayers R.2007. Guidelines on Cell Phone Forensics. National Institute of Standards and
Technology (NIST), Special Publication 800-101. Gaithersburg 2007.

[10] Rizwan, A. and Rajiv, V. D. 2009. Mobile Forensics: an overview, tools, future trendsand challenges
from Law Enforcement perspective, Communications in Computer and Information Science, volume 31,
Part 7, pp. 173-184.

[11] Zheng, P., and Ni, L. M. 2006. The Rise of the smartphone. IEEE Distributed Systems Online, volume
7, no. 3, pp. 3.

[12] Carrier B.D. 2006. Risks of live digital forensics analysis, Communications of the ACM , volume 49, no.
2, pp. 56-61.

[13] Butler, J. 2010. Forensic Analysis of Mobile Phones, A white paper on the nature of mobile phone
evidence and how to secure it, Geode Forensics Ltd, Lasswade, Midlothian.

[14] Curran, K., Robinson,A., Peacocake, S. and Cassidy, S. 2010. Mobile Phone Forensic Analysis, Interna-
tional Journal of Digital Crime and Forensics, volume 2, no. 1, pp. 15-27.

[15] Keonwoo, K., Dowon, H., Kyoil, Ch. and Jae-Cheol, R. 2007. Data Acquisition from cell phone using
Logical Approach,Proceedings of World Academy of Science, Engineering and Technology, volume 32,
pp. 29-33.

[16] Marcel, B., Martien de, J., Coert, K., Ronald van der, K. and Mark R. 2007. Forensic Data Recovery
from flash Memory. Small Scale Digital Device Forensics Journal, volume 1, no. 1, pp. 1-6.

[17] Kessler, G.C. 2004. An overview of steganography for the computer examiner. Forensics science commu-
nications, volume 6, no. 3, pp. 1-29

[18] Gostev A. 2006. Mobile Malware Evolution: An Overview, Part 1. http://www.viruslist.com. Accessed:
12-12-2010.

REFERENCES Page 49 of 52

[19] Kaspersky Lab. 2008. http://www.kaspersky.com. Accessed: 12-12-2010.

[20] Mobiledit user guide. 2008. http://www.mobiledit.com/guide.htm. Accessed 12-12-2010.

[21] Oxygen Forensic Suite. 2000. http://www.oxygen-forensic.com. Accessed 12-12-2010.

[22] Schmidt, A.D., Schmidt, H. G., Batyu, L.K., Clausen, H., Camtepe, S.A. and Albayrak, S. 2009. Smart-
phone Malware Evolution Revisited: Android Next Target?, 4th IEEE International Conference on
Malicious and Unwanted Software (Malware), Montreal, Quebec, Canada, 2009, pp. 1-7.

[23] US-CERT, United States Computer Emergency Readiness Team. 2010. Technical Information Paper-
TIP-10-105-01, Cyber Threats to Mobile Devices.

[24] US-CERT, United States Computer Emergency Readiness Team. 2009. Avoiding Social Engineering and
Phishing Attacks.

[25] Halfacree, G. 2010. Banking trojan hits Android.
http://www.bit-tech.net/news/bits/2010/01/11/banking-trojan-hits-android. Accessed 15-12.2010.

[26] Higgins, K. J. 2010. Smartphone Weather App Builds A Mobile Botnet.
http://www.darkreading.com/insider-threat/167801100/security/application-
security/223200001/index.html. Accessed: 15-12-2010.

[27] Irinco, B. 2010 .Malicious Android App Spies on Users Location. http://blog.trendmicro.com/malicious-
android-app-spies-on-users-location/. Accessed 15-12-2010.

[28] Baggili, I. M., Mislan, R., Rogers, M. 2007. Mobile phone forensics tool testing: A database driven
approach, International Journal of Digital Evidence, volume 6, no. 2, pp. 168-178.

[29] Ayers, R., Jansen S., Moenner, L. and Delaitre A. 2007. Cell Phone Forensic Tools: An Overview and
Analysis Update, National Institute of Standards and Technology Gaithersburg, MD 20899-8930.

[30] Open Handset Alliance Android. 2009. http://www.openhandsetalliance.com/android overview html.
Accessed 02-10-2010.

[31] Hoog A. 2010. Open Source Android Foreniscs application – beta released!
http://viaforensics.com/android-forensics/open-source-android-foreniscs-application-beta-
released.html. Accessed: 02-10-2010.

[32] Trend Micro, Threat Encyclopedia. ANDROIDOS DROIDSMS. 2010.
http://about-threats.trendmicro.com/Malware.aspx?language=us&name=ANDROIDOS DROIDSMS.A.
Accessed: 16-01-2011.

[33] Vennon, T. and Stroop, D. 2010. Android Malware, A Study of Known and Potential Malware, SMobile
Systems, Columbus, Ohio.

[34] Android Developers. 2009. Android Community: What is Android?.
http://developer.android.com/guide/basics/what-is-android.html. Accessed: 02-10-2010.

[35] Hoog A. 2010. An Introduction to Android Forensics. http://www.dfinews.com/articles.php?pid=974.
Accessed: 16-01-2011.

[36] Systems and Internet Infrastructure Security. 2008. Android Security Framework.
http://siis.cse.psu.edu/slides/android-sec-tutorial.pdf. Accessed: Accessed: 20-05-2010.

[37] Oracle Database. 2005. Data Mining Concepts.
http://download.oracle.com/docs/cd/B28359 01/datamine.111/b28129/classify.htm. Accessed 16-01-
2011.

REFERENCES Page 50 of 52

[38] Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large
databases. Proceedings of the 1993 ACM SIGMOD International Conference, Volume 22, no. 2, pp.
207-216.

[39] Hegland M. 2000. Algorithms for Association Rules, Australian National University, Canberra ACT
0200, Australia.

[40] Giradello, A. and Michahelles F. 2010. Explicit and implicit ratings for mobile applications, 3. Workshop
Digitale Soziale Netze and der 40 Jehrestangung der Gesellschaft fur Informatik, Leipzig, September.

[41] Shirali-Shahreza, M. and Shirali-Shahreza, S. 2006. Collage Steganography, proceedings of the 5th
IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS In-
ternational Workshop on Component-Based Software Engineering,Software Architecture and Reuse,
Honolulu, HI, USA, pp. 316-321.

A APPENDIX

A.1 Flow chart of the Suspicious Application Detection Algorithm

A.1 Flow chart of the Suspicious Application Detection Algorithm Page 52 of 52

Figure 15: The flow chart of the Suspicious Application Detection Algorithm

